Ilmiybaza.uz
BERNULLI DIFFERENSIAL TENGLAMASI.
Bernulli differensial tenglamasi deb,
π¦β² + π(π₯) β π¦ = π(π₯) β π¦π
koΚ»rinishdagi differensial tenglamaga aytiladi.
KoΚ»rinib turibtiki Bernulli differensial tenglamasi tuzilishi boΚ»yicha chiziqli bir jinsli
boΚ»lmagan birinchi tartibli differensial tenglamani eslatayapti. Differensial tenglama
Bernulli differensial tenglamasi ekanligini aniqlash uchun oΚ»ng tomonda y ning a-
darajasi qatnashganligidir.
π = 0 boΚ»lganda π¦β² + π(π₯) β π¦ = π(π₯)
π = 1 boΚ»lganda π¦β² + (π(π₯) β π(π₯)) β π¦ = 0
koΚ»rinishdagi differensial tenglamalarga keladi, ularni qanday qilib yechishni esa
koΚ»rib chiqdik.
y ning darajasidagi a βmusbat ham (a>0), manfiy ham (a<0), kasr son ham
(π =
1
2 βΉ π¦
1
2 = βπ¦ ) boΚ»lishi mumkin.
Bernulli tenglamasi turli xil koΚ»rinishlarda berilishi mumkin:
π(π₯) β π¦β² + π(π₯) β π¦ = π(π₯) β π¦π
π(π₯) β π¦β² + π¦ = π(π₯) β π¦π
π¦β² + π¦ = π(π₯) β π¦π
π¦β² + π(π₯) β π¦ = π¦π
Muhimi y ning birdan farqli darajasi qatnashsa boΚ»lgani. a>0 boΚ»lganda y=0 yechim
Bernulli tenglamasining xususiy yechimi boΚ»ladi.
Shunday qilib Bernulli tenglamasini yechish algoritmi quyidagicha:
Ilmiybaza.uz
1. OΚ»ng tomondagi π¦π dan qutulish lozim. Buning uchun tenglamani ikkala
tomonini π¦π ga boΚ»lamiz.
π¦β²
π¦π + π(π₯) β π¦1βπ = π(π₯)
2. π¦1βπ dan qutulish lozim, buning uchun π¦1βπ = π§ deb belgilash kiritamiz.
3. π§β² = (1 β π) π¦β²
π¦π βΉ π¦β² =
π¦π
1βπ π§β² βΉ
1
1βπ π§β² + π(π₯) β π§ = π(π₯)
koΚ»rinishdagi chiziqli bir jinsli boΚ»lmagan 1-tartibli differensial tenglamaga
kelamiz. Uni yechish algoritmini esa bilamiz.
Misol 3. β1 β π₯2 β π¦β² + π¦ = ππππ πππ₯ β π¦2, π¦(0) = β1
1. OΚ»ng tomonda y dan qutulish kerak.
2. Konturga olingan qoΚ»shiluvchida y dan qutulish kerak, buning uchun
1
π¦ = π§
almashtirish bajaramiz.
3. π§β² = β
π¦β²
π¦2 βΉ π¦β² = βπ¦2 β π§β² βΉ ββ1 β π₯2 β π§β² + π§ = ππππ πππ₯ βΉ
π§β² β
1
β1 β π₯2 π§ = β ππππ πππ₯
β1 β π₯2
Natijada Bernulli differensial tenglamasidan chiziqli bir jinsli boΚ»lmagan birinchi
tartibli differensial tenglamaga kelamiz. Bunday tenglamalarni yechish usullarini
esa bilamiz.
RIKKATI TENGLAMALARI.
Rikkati tenglamasi birinchi tartibli chiziqli boΚ»lmagan differensial tenglamalarning
eng qiziqarlilaridan hisoblanadi. Umumiy holda Rikkati tenglamasi quyidagi
koΚ»rinishda yoziladi:
π¦β² = π(π₯)π¦ + π(π₯)π¦2 + π(π₯)
Bunda π(π₯), π(π₯), π(π₯)-oΚ»zgaruvchi x ga bogΚ»liq boΚ»lgan uzluksiz funksiyalar.
Rikkati tenglamasi matematikaning turli sohalari (masalan algebraik geometriya va
conform akslantirishlar nazariyasida) va fizikada keng qoΚ»llaniladi. Amaliy
Ilmiybaza.uz
matematika masalalarida ham koΚ»p hollarda uchrab turadi. Rikkati tenglamasining
yechimi quyidagi teoremaga asoslangan:
Teorema. Agar Rikkati tenglamasining xususiy yechimi π¦1 aniq boΚ»lsa, u holda
uning yechimi quyidagicha formula bilan aniqlanadi:
π¦ = π¦1 + π’
Haqiqatdan ham ushbu yechimni Rikkati tenglamasiga qoΚ»yilsa, quyidagiga ega
boΚ»lamiz:
(π¦1 + π’)β² = π(π₯)(π¦1 + π’) + π(π₯)(π¦1 + π’)2 + π(π₯)
π¦1
β² + π’β² = π(π₯)π¦1 + π(π₯)π’ + π(π₯)π¦1
2 + 2π(π₯)π¦1π’ + π(π₯)π’2 + π(π₯)
Chap va oΚ»ng tomondagi tagi chizilgan ifodalarni qisqartirish mumkin, chunki π¦1
tenglamani qanoatlantiruvchi xususiy yechim. Natijada u(x) funksiya uchun
differensial tenglamaga ega boΚ»lamiz:
π’β² = π(π₯)π’2 + [2π(π₯)π¦1 + π(π₯)]π’
Ushbu tenglama esa Bernulli tenglamasi hisoblanadi. π§ =
1
π’ oΚ»zgaruvchi
almashtirish Bernulli tenglamasini integrallash mumkin boΚ»lgan chiziqli differensial
tenglamaga aylantiradi.
π(π₯), π(π₯), π(π₯)-larning koΚ»rinishiga qarab Rikkati tenglamasi turli xil
koΚ»rinishlarga ega boΚ»lib, ularning koΚ»pchiligi integrallanuvchi yechimga ega. Lekin
afsuski umumiy holda xususiy yechimni topish uchun qatΚΌiy algoritm yoΚ»q.
Rikkarti tenglamasining xususiy hollarini koΚ»rib chiqamiz:
Xususiy hol β1. π, π, π β koeffitsiyentlarning barchasi konstanta boΚ»lgan hol:
Agar Rikkati tenglamasidagi koeffitsiyentlar oΚ»zgarmas boΚ»lsa, u holda uni
oΚ»zgaruvchilari ajraladigan tenglamalarga olib kelish mumkin
π¦β² = ππ¦ + ππ¦2 + π; βΉ ππ¦
ππ₯ = ππ¦ + ππ¦2 + π; βΉ β«
ππ¦
ππ¦ + ππ¦2 + π = β« ππ₯
Ushbu integral esa π, π, π β larning ixtiyoriy qiymatlarida oson hisoblanadi.
Xususiy hol β2. π(π₯) = 0, π(π₯) = π, π(π₯) = π β π₯π; βΉ π¦β² = π β π¦2 + π β π₯π
Ilmiybaza.uz
Rikkati tenglamasining ushbu xusuaiy holi ajoyib yechimga ega. Agar n=0 boΚ»lsa,
biz yana 1-holga kelamiz. Agar n=-2 boΚ»lsa, Rikkati tenglamasi π¦ =
1
π§ almashtirish
orqali bir jinsli tengalamaga aylanadi.
Ushbu differensial tenglamani π =
4π
1β2π ; π = Β±1; Β±2; Β±3; β¦ holler uchun ham
yechish mumkin boΚ»ladi, bunda umumiy yechimlar silindrik funksiyalar orqali
ifodalanadi.
n ning boshqa qiymatlarida Rikkati tenglamasini elementar funksiyalarning
integrallari orqali ifodalash mumkin. Ushbu fakt fransuz matematigi J.Liuvill
tomonidan aniqlangan.
Rikkati
tenglamasining
boshqa
koΚ»pgina
xususiy
hollarini
http://eqworld.ipmnet.ru/en/solutions/ode/ode-toc1.htm saytda koΚ»rish mumkin.
TOΚ»LA DIFFERENSIALLI TENGLAMA.
Agar π(π₯, π¦)ππ₯ + π(π₯, π¦)ππ¦ = 0 differensial tenglamada βπ§ = π(π₯, π¦) funksiya
topilsaki,
ππ(π₯,π¦)
ππ₯
= π(π₯, π¦),
ππ(π₯,π¦)
ππ¦
= π(π₯, π¦) (*)
boΚ»lsa,
π(π₯, π¦)ππ₯ + π(π₯, π¦)ππ¦ = ππ(π₯, π¦)
ππ₯
ππ₯ + ππ(π₯, π¦)
ππ¦
ππ¦ = ππ(π₯, π¦) = 0 βΉ
boΚ»lib, umumiy yechim
π(π₯, π¦) = πΆ
koΚ»rinishda boΚ»ladi.
Agar differensial tenglama uchun
ππ(π₯, π¦)
ππ¦
= ππ(π₯, π¦)
ππ₯
shart bajarilsa, u holda differensial tenglama toΚ»la differensialga keladi va π(π₯, π¦)
funksiya quyidagicha koΚ»rinishda qidiriladi:
1-usul:
ππ(π₯,π¦)
ππ₯
= π(π₯, π¦) shartdan y ni oΚ»zgarmas deb olib, x boΚ»yicha integral
olamiz, constantani y ga bogΚ»liq funksiya qilib olib
Ilmiybaza.uz
π(π₯, π¦) = β« π(π₯, π¦)ππ₯ + π½(π¦)
ikkinchi shartni
ππ(π₯,π¦)
ππ¦
= π(π₯, π¦) ham bajarilishini talab qilib, π½(π¦) ni ham
koΚ»rinishini aniqlaymiz.
2-usul:
ππ(π₯,π¦)
ππ¦
= π(π₯, π¦) shartdan x ni oΚ»zgarmas deb olib, y boΚ»yicha integral
olamiz, constantani x ga bogΚ»liq funksiya qilib olib
π(π₯, π¦) = β« π(π₯, π¦)ππ¦ + Ξ³(π₯)
birinchi shartni
ππ(π₯,π¦)
ππ₯
= π(π₯, π¦) ham bajarilishini talab qilib, Ξ³(π₯) ni ham
koΚ»rinishini aniqlaymiz.
Misol. (2π₯ + 3π₯2π¦)ππ₯ + (π₯3 β 3π¦2)ππ¦ = 0
Differensial tenglama toΚ»la differensialga keltirilish shartini tekshiramiz
ππ(π₯, π¦)
ππ¦
= π(2π₯ + 3π₯2π¦)
ππ¦
= 3π₯2
ππ(π₯, π¦)
ππ₯
= π(π₯3 β 3π¦2)
ππ₯
= 3π₯2
ππ(π₯,π¦)
ππ¦
=
ππ(π₯,π¦)
ππ₯
shart bajarildi, u holda
1-usul
π(π₯, π¦) = β« π(π₯, π¦)ππ₯ + π½(π¦) = β«(2π₯ + 3π₯2π¦)ππ₯ + π½(π¦)=π₯2 + π₯3π¦ + π½(π¦)
π½(π¦) ni topish uchun ikkinchi shartni bajarilishini talab qilamiz:
ππ(π₯,π¦)
ππ¦
= π(π₯, π¦) β
ππ(π₯,π¦)
ππ¦
=
π(π₯2+π₯3π¦+π½(π¦))
ππ¦
= π₯3 + π½β²(π¦) = π₯3 β 3π¦2 β
π½β²(π¦) = β3π¦2 β π½(π¦) = βπ¦3 + ππππ π‘ β π(π, π) = ππ + πππ β ππ = πͺ
2-usul
π(π₯, π¦) = β« π(π₯, π¦)ππ¦ + Ξ³(π₯) = β«(π₯3 β 3π¦2)ππ¦ + Ξ³(π₯) = π₯3π¦ β π¦3 + Ξ³(π₯)
Ξ³(π₯) ni topish uchun birinchi shartni bajarilishini talab qilamiz:
ππ(π₯, π¦)
ππ₯
= π(π₯, π¦) β ππ(π₯, π¦)
ππ₯
= π(π₯3π¦ β π¦3 + Ξ³(π₯))
ππ₯
= 3π₯2π¦ + Ξ³β²(π₯)
= 2π₯ + 3π₯2π¦ β
Ilmiybaza.uz
Ξ³β²(π₯) = 2π₯ β Ξ³(π₯) = π₯2 + ππππ π‘
π(π, π) = πππ β ππ + ππ = ππ + πππ β ππ = πͺ
Eslatma: Agar π(π₯, π¦)ππ₯ + π(π₯, π¦)ππ¦ = 0 ni m(x,y)β’ 0 funksiyaga koΚ»paytirish
natijasida toΚ»la differensialga aylansa, m(x,y) ga integrallovchi koΚ»paytuvchi
deyiladi. Agar M(x,y) va N(x,y) funksiyalar uzluksiz xususiy hosilalarga ega va bir
vaqtni oΚ»zida nolga aylanmasa, u holda integrallovchi koΚ»paytuvchi mavjud. Lekin
uni qidirishning umumiy usuli mavjud emas.
INTEGRALLOVCHI KOΚ»PAYTUVCHI VA UNI TANLASH USULLARI.
Aytaylik quyidagicha differensial tenglama
π(π₯, π¦)ππ₯ + π(π₯, π¦)ππ¦ = 0 (*)
berilgan boΚ»lib, P(x,y) va Q(x,y) lar ikkita oΚ»zgaruvchi x va y larning funksiyasi
boΚ»lib, biror bir D sohada uzluksiz boΚ»lsin. Agar
ππ
ππ₯ β ππ
ππ¦
boΚ»lsa, u holda tenglama toΚ»la differensialli tenglama boΚ»lmaydi. Biroq
integrallovchi koΚ»paytuvchini tanlashga urinib koΚ»rishimiz mumkin. Agar (*)
tenglamani m(x,y)β’ 0 funksiyaga koΚ»paytirish natijasida toΚ»la differensialga
aylansa, m(x,y) ga integrallovchi koΚ»paytuvchi deyiladi. U holda quyidagicha
tenglik oΚ»rinli boΚ»ladi:
π(π(π₯, π¦)π(π₯, π¦))
ππ₯
= π(π(π₯, π¦)π(π₯, π¦))
ππ¦
Ushbu shartni quyidagicha koΚ»rinishda yozish mumkin:
π β ππ
ππ₯ + π β ππ
ππ₯ = π β ππ
ππ¦ + π β ππ
ππ¦ β
π β ππ
ππ₯ β π β ππ
ππ¦ = π β (ππ
ππ¦ β ππ
ππ₯) β
Oxirgi ifoda birinchi tartibli xususiy hosilali tenglama boΚ»lib, integrallovchi
koΚ»paytuvchi m(x,y) ni aninqlaydi. Integrallovchi koΚ»paytuvchini topishning
umumiy usuli mavjud emas, lekin ayrim xususiy hollarda olingan xususiy hosilali
tenglamani yechib, natijada integrallovchi koΚ»paytuvchini aniqlash mumkin.
1. Integrallovchi koΚ»paytuvchi x oΚ»zgaruvchiga bogΚ»liq boΚ»lsa: m=m(x)
Ilmiybaza.uz
Bunday holda
ππ
ππ¦ = 0 boΚ»lib, shuning uchun ham m(x,y) uchun tenglamani
quyidagicha yozish mumkin:
π β ππ
ππ₯ = π β (ππ
ππ₯ β ππ
ππ¦) β 1
π β ππ
ππ₯ = 1
π β (ππ
ππ¦ β ππ
ππ₯) β
Ushbu tenglamaning oΚ»ng tomoni faqat x ning funksiyasi boΚ»lsa, u holda m(x)
funksiyani oxirgi tenglamani integrallash orqali topish mumkin.
2. Integrallovchi koΚ»paytuvchi y oΚ»zgaruvchiga bogΚ»liq boΚ»lsa: m=m(y)
Oldingi holatdagidek, bu holda
ππ
ππ₯ = 0 boΚ»lib, shuning uchun ham m(x,y) uchun
tenglamani quyidagicha yozish mumkin:
1
π β ππ
ππ¦ = β 1
π β (ππ
ππ¦ β ππ
ππ₯)
Ushbu tenglamaning oΚ»ng tomoni faqat y ning funksiyasi boΚ»lsa, u holda m(y)
funksiyani oxirgi tenglamani integrallash orqali topish mumkin.
3. Integrallovchi koΚ»paytuvchi x va y oΚ»zgaruvchilarning aniq bir
kombinatsiyalariga bogΚ»liq bolsa: m=m(z(x,y))
Yangi z(x,y) funksiya masalan quyidagicha koΚ»rinishlarda boΚ»lishi mumkin:
π§ = π₯
π¦ ; π§ = π₯ β π¦; π§ = π₯ + π¦; π§ = π₯2 + π¦2; β¦
Bunda muhimi shundaki, integrallovchi koΚ»paytuvchi m(x,y) bitta z oΚ»zgaruvchining
funksiyasi sifatida keladi:
m(x,y)=m(z)
va quyidagicha differensial tenglamadan topiladi:
1
π β ππ
ππ§ =
ππ
ππ¦ β ππ
ππ₯
π ππ§
ππ₯ β π ππ§
ππ¦
OΚ»ng tomon faqat z ga bogΚ»liq va maxraj nolga teng emas deb faraz qilinadi.
Misol. (1 + π¦2)ππ₯ + π₯π¦ππ¦ = 0 differensial tenglama yechhilsin.
Boshlanishida tenglama toΚ»la differensialli tenglama ekanligini tekshiramiz:
ππ
ππ₯ = π
ππ₯ (π₯π¦) = π¦; ππ
ππ¦ = π
ππ¦ (1 + π¦2) = 2π¦
Ilmiybaza.uz
KoΚ»rinib turibtiki xususiy hosilalar bir-biriga teng emas, demak tenglama toΚ»la
differensiallanuvchi tenglamaga kelmaydi. ToΚ»la differensiallanuvchi koΚ»rinishga
olib kelish uchun integrallovchi koΚ»paytuvchini tanlashga harakat qilib koΚ»ramiz:
Quyidagicha funksiyani hisoblaymiz:
ππ
ππ¦ β ππ
ππ₯ = 2π¦ β π¦ = π¦
KoΚ»rinib turibtiki:
1
π β (
ππ
ππ¦ β
ππ
ππ₯) =
1
π₯π¦ β π¦ =
1
π₯
Ifoda faqat x oΚ»zgaruvchiga bogΚ»liq, demak integrallovchi koΚ»paytuvchi ham faqat
x ga bogΚ»liq boΚ»ladi: m=m(x), uni esa quyidagi tenglamadan topamiz:
1
π β ππ
ππ₯ = 1
π β (ππ
ππ¦ β ππ
ππ₯) = 1
π₯ βΉ ππ
π = ππ₯
π₯ βΉ ππ|π| = ππ|π₯| β π = Β±π₯
m=x ni tanlaymiz va berilgan differensial tenglamani x ga koΚ»paytiramiz. Natijada
toΚ»la differensialli tenglamaga kelamiz:
(π₯ + π₯π¦2)ππ₯ + π₯2π¦ππ¦ = 0
Endi toΚ»la differensiallilik sharti bajariladi:
ππ
ππ₯ = π
ππ₯ (π₯2π¦) = 2π₯π¦; ππ
ππ¦ = π
ππ¦ (π₯ + π₯π¦2) = 2π₯π¦
u(x,y) funksiyani tenglamalar sistemasidan aniqlash mumkin:
{
ππ’
ππ₯ = π₯ + π₯π¦2
ππ’
ππ¦ = π₯2π¦
Birinchi tenglamadan
π’(π₯, π¦) = β«(π₯ + π₯π¦2) ππ₯ = π₯2
2 + π₯2π¦2
2
+ π(π¦)
Ushbu ifodani ikkinchi tenglamaga qoΚ»yib π(π¦) ni aniqlaymiz:
ππ’
ππ¦ = π
ππ¦ [π₯2
2 + π₯2π¦2
2
+ π(π¦)] = π₯2π¦; βΉ π₯2π¦ + πβ²(π¦) = π₯2π¦ βΉ
πβ²(π¦) = 0 βΉ π(π¦) = πΆ, bunda C β ixtiyoriy konstanta
Shunday qilib, differensial tenglamaning umumiy yechimi
π₯2
2 + π₯2π¦2
2
+ πΆ = 0
Ilmiybaza.uz
EGRI CHIZIQLAR OILASI. BIRINCHI TARTIBLI DIFFERENSIAL
TENGLAMALARNING MAXSUS YECHIMLARI.
Egri chiziq tenglamasi umumiy holda f(x,y)=0 tenglama bilan aniqlanadi. Ayrim
hollarda egri chiziqlarga bitta yoki bir nechta parametrlar qoΚ»shishadi. Parametrlarga
turli xil qiymatlar berish mumkin. Egri chiziq ifodasida bitta parameter kirgan holni
koΚ»rib chiqamiz:
π(π₯, π¦, π) = 0 (1)
Parametr ixtiyoriy π0 qiymat qabul qiladi va qandaydir π(π₯, π¦, π0) = 0 egri chiziqni
aniqlaydi. C parameter oΚ»zgarganda egri chiziq shaklini va XOY tekislikdagi
joylashuvini oΚ»zgartiradi.
TaΚΌrif 1. π(π₯, π¦, π) = 0 tenglama bilan aniqlanadigan barcha egri chiziqlar
majmuasiga bir parametrli egri chiziqlar oilasi deyiladi, tenglamaning oΚ»ziga esa
egri chiziqlar oilasining tenglamasi deyiladi.
TaΚΌrif 2. Har bir nuqtasida egri chiziqlar oilasining bitta egri chizigΚ»i bilan
urinadigan egri chiziqqa berilgan egri chiziqlar oilasining gardishi deyiladi.
Gardishning parametrik tenglamasi
{ π(π₯, π¦, π) = 0
ππ
β²(π₯, π¦, π) = 0
tenglamalar
sistemasi
orqali
aniqlanadi.
Tenglamalar
sistemasidan
c
ni
yoΚ»qotsak, u holda gardishning aniq yoki noaniq
koΚ»rinishini topib olamiz.
Ushbu sistema gardish mavjudligining zaruriy
sharti hisoblanadi. Ushbu sistemaning yechimi
gardishdan tashqari, gardishga tegishli boΚ»lmagan egri chiziqlar oilasining maxsus
nuqtalarini oΚ»z ichiga olishi mumkin. Sistemaning barcha yechimlar toΚ»plami
diskriminant egri chiziq deyiladi. Shunday qilib gardish β diskriminant egri
chiziqning bir qismini tashkil qiladi. Gardishni bir qiymatli topish uchun uning
mavjudligining yetarli shartidan foydalaniladi. Ushbu shart quyidagicha shartni
bajarilishi talab qiladi:
Ilmiybaza.uz
|ππ₯
β²
ππ¦
β²
πππ₯
β²β²
πππ¦
β²β²| β 0 yoki
π2π
ππ2 β 0
Har qanday bir parametrli egri chiziqlar oilasi gardishga ega boΚ»lavermaydi.
Misol 1. π₯2 + π¦2 = π2 tenglama bilan berilgan konsentrik aylanalar oilasi
gardishga ega emas.
Chunki bunday egri chiziqlar oilasi uchun yetarli shart
bajarilmaydi:
π(π₯, π¦, π) = π₯2 + π¦2 β π2 = 0, ππ
β² = β2π
|ππ₯
β²
ππ¦
β²
πππ₯
β²β²
πππ¦
β²β²| = |2π₯
2π¦
0
0 | = 0 Demak gardish yoΚ»q!
Misol 2. (π₯ β π)2 + (π¦ β π)2 = 1 aylanalar oilasining gardishi topilsin?
{π(π₯, π¦, π) = (π₯ β π)2 + (π¦ β π)2 β 1 = 0
ππ
β²(π₯, π¦, π) = β2(π₯ β π) β 2(π¦ β π) = 0
βΉ
π₯ + π¦ = 2π βΉ π =
π₯+π¦
2
c β ning ifodasini 1-tenglamaga qoΚ»yamiz βΉ
(π₯ β π₯ + π¦
2
)
2
+ (π¦ β π₯ + π¦
2
)
2
β 1 = 0 βΉ π¦ β π₯
= Β±β2 βΉ π¦ = π₯ Β± β2
Demak gardish tenglamasi : π¦ = π₯ β β2 ; π¦ = π₯ + β2
Gardish tenglamasida aylanalar oilasi maxsus nuqtalarga ega emas, shuning uchun
ham olingan yechimlar faqat gardish tenglamalari boΚ»ladi.
Ilmiybaza.uz
Misol 3. π2 + π2 = 1 shart bajarilganda
ππ
ππ +
ππ
ππ = 1 tenglama bilan berilgan
ellipslar oilasining gardishi topilsin.
π2 + π2 = 1 βΉ π2 = 1 β π2 βΉ
ππ
ππ +
ππ
1βπ2 = 1 βΉ
0<a<1
{
ππ
ππ +
ππ
1 β π2 β 1 = 0
β2 π₯2
π3 β β2ππ¦2
(1 β π2)2 = 0
βΉ π2 =
|π₯|
|π₯| + |π¦| βΉ
1-tenglamaga qoΚ»yamiz βΉ
|π₯| + |π¦| = Β±1, βΉ β1 boΚ»lishi maΚΌnoga ega emas, demak |π₯| + |π¦| = 1 bu
tenglama esa kvadratni tashkil qiladi.
Misol 4. Koordinatalar oΚ»qlari bilan kesishish natijasida bir xil yuza hosil qiladigan
toΚ»gΚ»ri chiziqlar oilasining gardishi topilsin?
π₯
π +
π¦
π = 1 βΉ π =
1
2 π β π βΉ π > 0, π > 0 βΉ π =
2π
π βΉ π βoΚ»zgarmasligi
lozim .
{
π₯
π +
ππ¦
2π β 1 = 0
β
π₯
π2 +
π¦
2π = 0
βΉ π = β
2ππ₯
π¦ ,
a-ning
ifodasini
1-tenglamaga
qoΚ»ysak
gardish
tenglamasini topamiz:
π₯
β2ππ₯
π¦
+
β2ππ₯
π¦ βπ¦
2π
β 1 = 0 βΉ π¦ =
π
2 β
1
π₯ β demak
gardish tenglamasi giperbola ekan.
Masalan toΚ»gΚ»ri chiziq koordinata oΚ»qlari bilan
kesishish natijasida hosil qilgan yuza S=4 ga
teng boΚ»lsa, u holda bunday toΚ»gΚ»ri chiziqlar oilasi gardishi π¦ =
π
2 β
1
π₯ =
2
π₯ β giperbola
boΚ»ladi. Giperbolaning ixtiyoriy nuqtasiga oΚ»tqazilgan urinma koordinata oΚ»qlari
bilan hosil qilgan uchburchak yuzasi 4 ga teng.
Misol 5. Bir xil yuzaga ega boΚ»lgan ellipslar oilasi gardishi topilsin?
Ilmiybaza.uz
π₯
π2 +
π¦
π2 = 1 βΉ π = π β π β π β mustaqil bajarish uchun vazifa.
Har qanday differensial tenglamaning umumiy yechimi bu qandaydir egri chiziqlar
oilasidir. Demak har qanday egri chiziqlar oilasiga qandaydir differensial tenglama
mos keladi. Aytaylik n ta parametrli egri chiziqlar oilasi
π(π₯, π¦, π1, π2, β¦ , ππ) = 0 (*)
berilgan boΚ»lsin. Unga mos keladigan differensial tenglamani topish uchun y ni x
ning funksiyasi deb (*) tenglamadan n marta xususiy hosila olish lozim. Hosil
boΚ»lgan tenglamalar va (*) tenglamadan π1, π2, β¦ , ππ-larni yoΚ»qotsak, (*) ga mos
keladigan differensial tenglamani topamiz.
Misol 6. π(π₯, π¦, π1, π2) = π1π₯ + (π¦ β π2)2 = 0 egri chiziqlar oilasiga mos
keladigan differensial tenglama topilsin?
ππ₯
β² = π1 + 2(π¦ β π2) β π¦β² = 0 βΉ π1 = β2(π¦ β π2) β π¦β²
ππ₯π₯
β²β² = 2π¦β² β π¦β² β 2 β (π¦ β π2) β π¦β²β² = 0 βΉ π¦ β π2 = β
π¦β²2
π¦β²β²
π1 va π2 lar ifodalarini egri chiziqlar oilasiga qoΚ»ysak, ixchamlashlardan keyin
π¦β² + 2π₯π¦β²β² = 0
differensial tenglamaga kelamiz.
Misol 7. π¦ = πππ₯ egri chiziqlar oilasiga mos differensial tenglama topilsin?
Parametr 1 ta boΚ»lgani uchun, bir marta x boΚ»yicha hosila olamiz:
{
π(π₯, π¦, π) = π¦ β πππ₯ = 0
ππ₯
β²(π₯, π¦, π) = π¦β² β π β πππ₯ = 0 βΉ π = π¦β² β πβππ₯ = π¦β² β π¦ βΉ π¦ = ππ¦β²βπ¦ βΉ
natijada πβ² =
π
π β π β πππ koΚ»rinishdagi differensial tenglamaga kelamiz.
BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMANING MAXSUS
YECHIMLARI
Aytaylik πΉ(π₯, π¦, π¦β²) = 0 differensial tenglama Π€(π₯, π¦, π) = 0 umumiy yechimga
ega boΚ»lsin. Π€(π₯, π¦, π) = 0 yechimga mos keluvchi egri chiziqlar oilasi gardishga
ega boΚ»lsin, u holda bu gardish ham differensial tenglama yechimi boΚ»ladi.
Haqiqatdan ham gardish oΚ»zining har bir nuqtasida egri chiziqlar oilasining bittasi
bilan urinadi, yaΚΌni u bilan umumiy urinmaga ega boΚ»ladi. Har bir umumiy nuqtada
gardish bilan egri chiziq bir xil π₯, π¦, π¦β² qiymatga ega. Oilaning egri chizigΚ»i uchun
Ilmiybaza.uz
π₯, π¦, π¦β² - lar πΉ(π₯, π¦, π¦β²) = 0 differensial tenglamani ham qanoatlantiradi. Bu esa
gardishning har bir nuqtasi yechim boΚ»lishini bundan esa butun gardishning oΚ»zi ham
integral egri chiziq (yechim) boΚ»lishini, uning tenglamasi esa differensial
tenglamaning yechimi boΚ»lishini anglatadi.
Eslatma: Gardish β umuman olganda integral yechimlar oilasining vakili emas,
shuning uchun ham umumiy yechimdan C ning biror xususiy qiymati orqali
topilmaydi.
TaΚΌrif. Differensial tenglamaning umumiy yechimidan C ning birorta ham qiymati
orqali topib boΚ»lmaydigan va grafigi umumiy yechimga kiruvchi integral egri chiziq
oilasining gardishi boΚ»lgan yechimi differensial tenglamaning maxsus yechimi
deyiladi.
Maxsus yechim deyilishiga sabab: maxsus yechimning har bir nuqtasidan kamida
2 ta integral egri chiziq oΚ»tadi β yaΚΌni gardish va umumiy yechimning bitta integral
egri chizigΚ»i, bu esa differensial tenglama yechimining yagonaligini buzayapti.
TaΚΌrif. Yechimning yagonaligi buziladigan nuqtalar maxsus nuqtalar deyiladi
Demak maxsus yechim maxsus nuqtalardan iborat boΚ»ladi.