CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY YECHISH USULLARI (Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari)

Yuklangan vaqt

2024-05-17

Yuklab olishlar soni

7

Sahifalar soni

10

Faytl hajmi

121,0 KB


Ilmiybaza.uz 
 
 
 
 
 
 
 
CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY 
YECHISH USULLARI 
 
 
 
Tayanch so‘z va iboralar: Chiziqli algebraik tenglamalar sistemasi yechimini 
topishning iteratsion usullari 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ilmiybaza.uz CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY YECHISH USULLARI Tayanch so‘z va iboralar: Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari Ilmiybaza.uz 
 
 
III.1. Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion 
usullari 
 
a) 
, ,
1.. ,
ij
А
a
i j
n n







tartibli kvadrat matritsa, 
 




1
1
,...,
,
,...,
,
n
n
x
x
x
b
b
b
n


 o‘lchovli vektorlar bo‘lsa, Ax=b 
chiziqli sistema Gauss usuli bilan quyidagicha echiladi: 
 
To‘g‘ri yurish. Kengaytirilgan [A|b] matritsa uchburchak matritsaga 
keltiriladi.  












b
nn
n
n
n
n
b
a
a
a
b
a
a
a
b
a
a
a
...
. .
. . . . . . .
.
...
...
2
1
2
2
22
21
1
1
12
11
~ 

















)
1(
1
1( )
1( )
2
1)
(
1
2
(1)
2
1( )
22
1)
(
1
1
(1)
1
1( )
12
...
0
. . . . . . . .
.
...
0
...
1
nn
nn
n
n
n
n
n
a
a
a
a
a
a
a
a
a
~ 
 
            




















































)
(
1
1)
(
1
1
1)
(
1
2)
(
1
2
(2)
2
(2)
22
1)
(
1
1
(1)
1
(1)
13
(1)
12
2)
(
1
(2)
(2)
3
2)
(
1
(2)
3
(1)
33
2)
(
1
2
(2)
2
(2)
23
1)
(
1
1
(1)
1
(1)
12
(1)
12
0 0 ... 0 1
0
0 0 1
0
. . . . . . . . .
.
. . . . . . . . .
.
...
1
0
...
1
... ~
~
...
0
0
. .
.
.
.
.
. .
.
. .
.
.
.
. . . .
.
...
0
0
...
... 1
0
...
1
n
nn
n
n
n
n
n
n
n
n
n
n
nn
nn
n
n
n
n
n
n
n
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
 
 Teskari yurish. No’malumlar ketma-ket topiladi: 
                             
( )
( )
( )
1
1
1
,
,
1,
2,...,1.
n
n
i
i
n
nn
i
in
ij
i
j i
x
a
x
a
a x
i
n
n


 







 
 
b) Determinantni hisoblash. 
Ilmiybaza.uz III.1. Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari a) , , 1.. , ij А a i j n n        tartibli kvadrat matritsa,     1 1 ,..., , ,..., , n n x x x b b b n    o‘lchovli vektorlar bo‘lsa, Ax=b chiziqli sistema Gauss usuli bilan quyidagicha echiladi: To‘g‘ri yurish. Kengaytirilgan [A|b] matritsa uchburchak matritsaga keltiriladi.             b nn n n n n b a a a b a a a b a a a ... . . . . . . . . . . ... ... 2 1 2 2 22 21 1 1 12 11 ~                  ) 1( 1 1( ) 1( ) 2 1) ( 1 2 (1) 2 1( ) 22 1) ( 1 1 (1) 1 1( ) 12 ... 0 . . . . . . . . . ... 0 ... 1 nn nn n n n n n a a a a a a a a a ~                                                     ) ( 1 1) ( 1 1 1) ( 1 2) ( 1 2 (2) 2 (2) 22 1) ( 1 1 (1) 1 (1) 13 (1) 12 2) ( 1 (2) (2) 3 2) ( 1 (2) 3 (1) 33 2) ( 1 2 (2) 2 (2) 23 1) ( 1 1 (1) 1 (1) 12 (1) 12 0 0 ... 0 1 0 0 0 1 0 . . . . . . . . . . . . . . . . . . . . ... 1 0 ... 1 ... ~ ~ ... 0 0 . . . . . . . . . . . . . . . . . . . ... 0 0 ... ... 1 0 ... 1 n nn n n n n n n n n n n nn nn n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a Teskari yurish. No’malumlar ketma-ket topiladi: ( ) ( ) ( ) 1 1 1 , , 1, 2,...,1. n n i i n nn i in ij i j i x a x a a x i n n            b) Determinantni hisoblash. Ilmiybaza.uz 
 
(1)
(1)
12
1
12
1
(1)
(1)
22
2
21
22
2
11
11
1
1
2
(1)
(1)
2
1
...
...
0
...
...
det( )
. . . . . . .
,
. . . . . . . .
. . . .
. .
...
0
...
n
n
n
n
n
n
n
n
n
nn
n
nn
a
a
a
a
a
a
a
a
a
a
D
A
a
a D
a
a
a
a
a





                
(1)
(1)
22
2
(1)
1
11
(1)
(1)
2
...
1
. . . . . . ,
...
n
ij
ij
n
ij
ij
ij
n
nn
a
a
a
a
D
a
a a
a
a
a
 

. 
Bo‘lishda ishtirok etgan elementlar 
(1)
(
1)
11
, 22
,...,
n
nn
a
a
a

 bosh elementlar 
deyiladi. Buning davom ettirib quyidagi ifodaga kelamiz: 
                                   
1)
(
(1)
22
11
1
11
...

 

n
nn
n
n
a
a a
a D
D
, 
ya’ni determinant Gauss usulida bosh elementlarning ko‘paytmasiga teng. 
v) Progonka usuli  
0
0
0 1
0
1
1
1
,
,
1..
1,
i
i
i
i
i
i
i
n
n
n
n
n
b x
c x
d a x
b x
c x
d
i
n
a x
b x
d












 
uchburchak sistema uchun progonka usuli quyidagidan iborat 
 
1
1
0
0
,
,
0,...,
1,
0
i
i
i
i
i
i
i
i
i
i
i
i
C
d
a u
v
u
i
n
u
v
a v
b
a v
b




 









                         
(to‘g‘ri yurish), 
1
1
,
,
1,
2,...,0.
n
n
n
n
i
i
i
i
n
n
n
d
a u
x
x
v
x
u
i
n
n
a v
b













              
g)                    D()=det(A-E)=(-1)n(n-p1- n-1-…-pn)=0 
algebraik tenglama A-matritsaning xarakteristik tenglamasi deyiladi. Algebraning 
asosiy teoremasiga asosan, D()=0 tenglama n ta ildizga ega. Bu ildizlar A-
Ilmiybaza.uz (1) (1) 12 1 12 1 (1) (1) 22 2 21 22 2 11 11 1 1 2 (1) (1) 2 1 ... ... 0 ... ... det( ) . . . . . . . , . . . . . . . . . . . . . . ... 0 ... n n n n n n n n n nn n nn a a a a a a a a a a D A a a D a a a a a      (1) (1) 22 2 (1) 1 11 (1) (1) 2 ... 1 . . . . . . , ... n ij ij n ij ij ij n nn a a a a D a a a a a a    . Bo‘lishda ishtirok etgan elementlar (1) ( 1) 11 , 22 ,..., n nn a a a  bosh elementlar deyiladi. Buning davom ettirib quyidagi ifodaga kelamiz: 1) ( (1) 22 11 1 11 ...     n nn n n a a a a D D , ya’ni determinant Gauss usulida bosh elementlarning ko‘paytmasiga teng. v) Progonka usuli 0 0 0 1 0 1 1 1 , , 1.. 1, i i i i i i i n n n n n b x c x d a x b x c x d i n a x b x d             uchburchak sistema uchun progonka usuli quyidagidan iborat 1 1 0 0 , , 0,..., 1, 0 i i i i i i i i i i i i C d a u v u i n u v a v b a v b                (to‘g‘ri yurish), 1 1 , , 1, 2,...,0. n n n n i i i i n n n d a u x x v x u i n n a v b              g) D()=det(A-E)=(-1)n(n-p1- n-1-…-pn)=0 algebraik tenglama A-matritsaning xarakteristik tenglamasi deyiladi. Algebraning asosiy teoremasiga asosan, D()=0 tenglama n ta ildizga ega. Bu ildizlar A- Ilmiybaza.uz 
 
matritsaning xos sonlari deyiladi. Agar 12….n bulsa 1 son maksimal xos son 
deyiladi. Uni iteratsiya usuli bilan topish mumkin: Ixtiyoriy y=y(0) vektor olinib 
y(k)=Ay(k-1), k=1,2,… vektorlar tuziladi. Ko‘rsatiladiki,  
( )
1
(
1)
lim
,
1.... ,
k
i
k
k
i
y
i
n
y


 

 bu erda y=[y1,….,yn]. Ya’ni  
           
n
i
y
y
y
y
k
i
k
i
k
i
k
i
1,....,
,
1)
(
1
)
(
1)
(
1
1)
(
2










 
 D()=0 tenglama ildizlari turli usullar bilan topiladi. 
Fadeev usulida  det(A),A-1  ,p1,…,pn sonlar quyidagicha topiladi: 
                       A1=A,      Sp(A1)=p1,     B1=A1-p1E, 
  
 
A2=AB1,      Sp(A2)/2=p2,     B2=A2-p2E, 
 
 
 
An=ABn-1,      Sp(An)/n=pn,     Bn=An-pnE,  A-1=Bn-1/pn ,det(A)=pn. 
 
                          
III.2. Bitta variantning yechilish tartibi 
 
1). Gauss usuli. 
 
 
 
A matritsa koeffitsientlari 
b o‘ng 
tomon 
 
3 
1 
1 
5 
 
1 
      3 
1 
5 
 
1 
1 
3 
5 
1-qadam 
1 
1/3 
1/3 
5/3 
 
0 
8/3 
2/3 
10/3 
 
0 
2/3 
8/3 
10/3 
2-qadam 
1 
1/3 
1/3 
5/3 
Ilmiybaza.uz matritsaning xos sonlari deyiladi. Agar 12….n bulsa 1 son maksimal xos son deyiladi. Uni iteratsiya usuli bilan topish mumkin: Ixtiyoriy y=y(0) vektor olinib y(k)=Ay(k-1), k=1,2,… vektorlar tuziladi. Ko‘rsatiladiki, ( ) 1 ( 1) lim , 1.... , k i k k i y i n y      bu erda y=[y1,….,yn]. Ya’ni n i y y y y k i k i k i k i 1,...., , 1) ( 1 ) ( 1) ( 1 1) ( 2           D()=0 tenglama ildizlari turli usullar bilan topiladi. Fadeev usulida det(A),A-1 ,p1,…,pn sonlar quyidagicha topiladi: A1=A, Sp(A1)=p1, B1=A1-p1E, A2=AB1, Sp(A2)/2=p2, B2=A2-p2E, An=ABn-1, Sp(An)/n=pn, Bn=An-pnE, A-1=Bn-1/pn ,det(A)=pn. III.2. Bitta variantning yechilish tartibi 1). Gauss usuli. A matritsa koeffitsientlari b o‘ng tomon 3 1 1 5 1 3 1 5 1 1 3 5 1-qadam 1 1/3 1/3 5/3 0 8/3 2/3 10/3 0 2/3 8/3 10/3 2-qadam 1 1/3 1/3 5/3 Ilmiybaza.uz 
 
 
0 
1 
1/4 
5/4 
 
0 
1 
4 
5 
3-qadam 
1 
1/3 
1/3 
5/3 
 
0 
1 
1/4 
5/4 
 
0 
0 
15/4 
15/4 
4-qadam 
 
 
1 
1 
   
 
1 
 
1 
 
1 
 
 
1 
 
Gauss usuli bilan echib ushbu  javobni oldik: x=[x1,x2,x3]=[1,1,1]. 
2). Zeydel iteratsiya usuli yechib javob olamiz: 
 
 
( )
(
1)
(
1)
1
2
3
(5
)/3
k
k
k
x
x
x





 
( )
( )
(
1)
2
1
3
(5
)/3
k
k
k
x
x
x




 
( )
( )
( )
3
1
2
(5
)/3
k
k
k
x
x
x



 
0 0 
0 
0 
1 x 1=  1.666667   
x 2=  1.111111   
  x 3=  0.740741   
2 x 1=  1.049383   
x 2=  1.069959   
  x 3=  0.960219   
3 x 1=  0.989941   
x 2=  1.016613   
  x 3=  0.997815   
4 x 1=  0.995190   
x 2=  1.002331   
  x 3=  1.000826   
5 x 1=  0.998948   
x 2=  1.  
  x 3=  1.000326   
6 x 1=  0.999866   
x 2=  0.999936   
  x 3=  1.000066   
            
3).  Determinantni   hisoblaymiz:         Det(A)=20. 
3
1
1
1 1/3 1/3
1
1/3
1/3
( )
1
3
1
31
3
1
3 0
8/3
2/3
1
1
3
1
1
3
0
2/3
8/3
1
1/3
1/3
1
1/3
1/3
1
1/3
1/3
8
8
8
5
8
5
3*
0
1
1/ 4
3*
0
1
1/ 4
3* *
0
1
1/ 4
3* *
20
3
3
3
2
3
2
0
2/3
8/3
0
0
5/ 2
0
0
1
Det A 








 
 
 
4). Teskari matritsani hisoblash ( 3.5 punktda ko‘rsatilgan) 
Ilmiybaza.uz 0 1 1/4 5/4 0 1 4 5 3-qadam 1 1/3 1/3 5/3 0 1 1/4 5/4 0 0 15/4 15/4 4-qadam 1 1 1 1 1 1 Gauss usuli bilan echib ushbu javobni oldik: x=[x1,x2,x3]=[1,1,1]. 2). Zeydel iteratsiya usuli yechib javob olamiz: ( ) ( 1) ( 1) 1 2 3 (5 )/3 k k k x x x      ( ) ( ) ( 1) 2 1 3 (5 )/3 k k k x x x     ( ) ( ) ( ) 3 1 2 (5 )/3 k k k x x x    0 0 0 0 1 x 1= 1.666667 x 2= 1.111111 x 3= 0.740741 2 x 1= 1.049383 x 2= 1.069959 x 3= 0.960219 3 x 1= 0.989941 x 2= 1.016613 x 3= 0.997815 4 x 1= 0.995190 x 2= 1.002331 x 3= 1.000826 5 x 1= 0.998948 x 2= 1. x 3= 1.000326 6 x 1= 0.999866 x 2= 0.999936 x 3= 1.000066 3). Determinantni hisoblaymiz: Det(A)=20. 3 1 1 1 1/3 1/3 1 1/3 1/3 ( ) 1 3 1 31 3 1 3 0 8/3 2/3 1 1 3 1 1 3 0 2/3 8/3 1 1/3 1/3 1 1/3 1/3 1 1/3 1/3 8 8 8 5 8 5 3* 0 1 1/ 4 3* 0 1 1/ 4 3* * 0 1 1/ 4 3* * 20 3 3 3 2 3 2 0 2/3 8/3 0 0 5/ 2 0 0 1 Det A          4). Teskari matritsani hisoblash ( 3.5 punktda ko‘rsatilgan) Ilmiybaza.uz 
 
1
0.4
0.1
0.1
0.1
0.4
0.1
0.1
0.1
0.4
A






 









 
III.3. Masalaning Mathcad dasturida yechilishi. 
 
 4 ta usulda yechish mumkin. 
a) Teskari matritsa yordamida yechish 
A
3
1
1
1
3
1
1
1
3









b
5
5
5









x
A 1

 b

x
1
1
1









 
b) lsolve(A,b) protsedurasi yordamida yechish 
s
lsolve A b

(
)

s
1
1
1









 
v) Given..Find bloki yordamida yechish 
A
3
1
1
1
3
1
1
1
3









b
5
5
5









x
0
0
0









Given
A
 x
b
x
Find x
( )

x
1
1
1









 
g) Teskari matritsa va determinantni hisoblash 
A 1

0.4
0.1

0.1

0.1

0.4
0.1

0.1

0.1

0.4









d
 A
d
20

 
d) Jordan –Gauss usuli (rref(A|b) bilan echish. Avvalo, augmetnt(A,b) komanda 
yordamida kengaytirilgan matritsa B:=(A|b) tuziladi, so‘ng rref(A|b)  komanda 
(Jordan –Gauss usuli) V kengaytirilgan matritsaga qo‘llanilib sistema birlik 
Ilmiybaza.uz 1 0.4 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.4 A                  III.3. Masalaning Mathcad dasturida yechilishi. 4 ta usulda yechish mumkin. a) Teskari matritsa yordamida yechish A 3 1 1 1 3 1 1 1 3          b 5 5 5          x A 1   b  x 1 1 1          b) lsolve(A,b) protsedurasi yordamida yechish s lsolve A b  ( )  s 1 1 1          v) Given..Find bloki yordamida yechish A 3 1 1 1 3 1 1 1 3          b 5 5 5          x 0 0 0          Given A  x b x Find x ( )  x 1 1 1          g) Teskari matritsa va determinantni hisoblash A 1  0.4 0.1  0.1  0.1  0.4 0.1  0.1  0.1  0.4          d  A d 20  d) Jordan –Gauss usuli (rref(A|b) bilan echish. Avvalo, augmetnt(A,b) komanda yordamida kengaytirilgan matritsa B:=(A|b) tuziladi, so‘ng rref(A|b) komanda (Jordan –Gauss usuli) V kengaytirilgan matritsaga qo‘llanilib sistema birlik Ilmiybaza.uz 
 
matritsaga keltiriladi, so‘ng hosil bo‘lgan matritsadan oxirgi ustun (javob) A-
reduced  komanda bilan kesib olinadi. 
ORIGIN
1

A
3
1
1
1
3
1
1
1
3









b
5
5
5









B
augment A b

(
)

B
3
1
1
1
3
1
1
1
3
5
5
5









rref B
( )
1
0
0
0
1
0
0
0
1
1
1
1









x
rref B
( )
4 

x
1
1
1









 
Mathcad dasturining qulay, soddaligi ko‘rinib turibdi. 
 
 
 
III.4. Oddiy iteratsiya usulining Mathcad da tashkil etishni ko‘ramiz. 
Ilmiybaza.uz matritsaga keltiriladi, so‘ng hosil bo‘lgan matritsadan oxirgi ustun (javob) A- reduced komanda bilan kesib olinadi. ORIGIN 1  A 3 1 1 1 3 1 1 1 3          b 5 5 5          B augment A b  ( )  B 3 1 1 1 3 1 1 1 3 5 5 5          rref B ( ) 1 0 0 0 1 0 0 0 1 1 1 1          x rref B ( ) 4   x 1 1 1          Mathcad dasturining qulay, soddaligi ko‘rinib turibdi. III.4. Oddiy iteratsiya usulining Mathcad da tashkil etishni ko‘ramiz. Ilmiybaza.uz 
 
×ÀÒÑ ó÷óí îääèé èòåðàöèÿ óñóëè
A
3
1
1
1
3
1
1
1
3









E
1
0
0
0
1
0
0
0
1









x
0
0
0









b
5
5
5










0.05

B
E
 A



C
 b


k
0 50


x
k 1
 

C
B x
k
 



x
20
 
0.997
0.997
0.997









x
30
 
1
1
1









x
10
 
0.9437
0.9437
0.9437









x
0
1
2
3
4
5
6
7
8
9
0
1
2
0
0.25
0.4375
0.5781
0.6836
0.7627
0.822
0.8665
0.8999
0.9249
0
0.25
0.4375
0.5781
0.6836
0.7627
0.822
0.8665
0.8999
0.9249
0
0.25
0.4375
0.5781
0.6836
0.7627
0.822
0.8665
0.8999
0.9249

 
 
III.5. Xos sonlar va xos vektorlarni Mathcad da topamiz. 
A
3
1
1
1
3
1
1
1
3









r
eigenvals A
(
)

s
eigenvecs A
(
)

r
2
2
5









s
0.719

0.025
0.694
0.387
0.816

0.43
0.577

0.577

0.577










 
 
Eng katta xos soni iteratsiya usuli bilan topishni tashkil etamiz;  
k
k
k
x
x
1
max
lim

 

, 
.
1,0 ,...,
,
(0)
( 1)
берилган
x
A k
x k


 
 
Ilmiybaza.uz ×ÀÒÑ ó÷óí îääèé èòåðàöèÿ óñóëè A 3 1 1 1 3 1 1 1 3          E 1 0 0 0 1 0 0 0 1          x 0 0 0          b 5 5 5           0.05  B E  A    C  b   k 0 50   x k 1    C B x k      x 20   0.997 0.997 0.997          x 30   1 1 1          x 10   0.9437 0.9437 0.9437          x 0 1 2 3 4 5 6 7 8 9 0 1 2 0 0.25 0.4375 0.5781 0.6836 0.7627 0.822 0.8665 0.8999 0.9249 0 0.25 0.4375 0.5781 0.6836 0.7627 0.822 0.8665 0.8999 0.9249 0 0.25 0.4375 0.5781 0.6836 0.7627 0.822 0.8665 0.8999 0.9249  III.5. Xos sonlar va xos vektorlarni Mathcad da topamiz. A 3 1 1 1 3 1 1 1 3          r eigenvals A ( )  s eigenvecs A ( )  r 2 2 5          s 0.719  0.025 0.694 0.387 0.816  0.43 0.577  0.577  0.577           Eng katta xos soni iteratsiya usuli bilan topishni tashkil etamiz; k k k x x 1 max lim     , . 1,0 ,..., , (0) ( 1) берилган x A k x k     Ilmiybaza.uz 
 
 
A
3
1
1
1
3
1
1
1
3







x
0
 
1
0
0







n
 10
f x y
( 
)
max
y3
x3
y1
x1

y2
x2




k
0 n


x
k 1
 

A
x
k
 


x
9
 
6.514
105

6.509
105

6.509
105










x
10
 
3.256
106

3.255
106

3.255
106










x
11
 
1.628
107

1.628
107

1.628
107










y
x
11
 

x
x
10
 

y0
x0
4.999

y1
x1
5

y2
x2
5

 
Demak, 
max  5
, natija oldingi hisoblashlarni takrorlayapti. 
 
 Individual topshiriqlar. 
 
Quyidagi sistema Gauss, Zeydelь, Fadeev usullari bilan echilsin va  determinant, 
teskari matritsa hisoblansin. Xos sonlar va xos vektorlar topilsin.  
 
1). 
8.30
2.62
4.10
1.90
16.92
3.92
8.45
7.78
2.46
22.61
,
,
0.2 ,
0,..., .
3.77
7.21
8.04
2.28
21.3
2.21
3.65
1.69
6.99
14.54
A
b
k k
n













































,  
2).
1
1
1
3
1
1
1
3
,
4,5,6,....,
.
1
1
1
3
1
1
1
3
k
k
k
k
A
k
b
k
k
k
k








 















 




 
 
 
Mavzu bo‘yicha savollar 
Ilmiybaza.uz A 3 1 1 1 3 1 1 1 3        x 0   1 0 0        n  10 f x y (  ) max y3 x3 y1 x1  y2 x2     k 0 n   x k 1    A x k     x 9   6.514 105  6.509 105  6.509 105           x 10   3.256 106  3.255 106  3.255 106           x 11   1.628 107  1.628 107  1.628 107           y x 11    x x 10    y0 x0 4.999  y1 x1 5  y2 x2 5  Demak, max  5 , natija oldingi hisoblashlarni takrorlayapti. Individual topshiriqlar. Quyidagi sistema Gauss, Zeydelь, Fadeev usullari bilan echilsin va determinant, teskari matritsa hisoblansin. Xos sonlar va xos vektorlar topilsin. 1). 8.30 2.62 4.10 1.90 16.92 3.92 8.45 7.78 2.46 22.61 , , 0.2 , 0,..., . 3.77 7.21 8.04 2.28 21.3 2.21 3.65 1.69 6.99 14.54 A b k k n                                              , 2). 1 1 1 3 1 1 1 3 , 4,5,6,...., . 1 1 1 3 1 1 1 3 k k k k A k b k k k k                                Mavzu bo‘yicha savollar Ilmiybaza.uz 
 
 
1. Iteratsiya usulining mohiyatini aytib bering. 
2. Tenglama iteratsiya usulini qo‘llash uchun qanday qilib ko‘rinishga kelitiriladi. 
3. Iteratsiya usulining yaqinlashish shartini ma’nosini aytib bering. 
4. Iteratsiya usulining nazariy va amaliy xatoliklarining ma’nosini aytib bering. 
 
Ilmiybaza.uz 1. Iteratsiya usulining mohiyatini aytib bering. 2. Tenglama iteratsiya usulini qo‘llash uchun qanday qilib ko‘rinishga kelitiriladi. 3. Iteratsiya usulining yaqinlashish shartini ma’nosini aytib bering. 4. Iteratsiya usulining nazariy va amaliy xatoliklarining ma’nosini aytib bering.