CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY YECHISH USULLARI (Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari)

Yuklangan vaqt

2024-05-17

Yuklab olishlar soni

7

Sahifalar soni

10

Faytl hajmi

121,0 KB


Ilmiybaza.uz 
 
 
 
 
 
 
 
CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY 
YECHISH USULLARI 
 
 
 
Tayanch so‘z va iboralar: Chiziqli algebraik tenglamalar sistemasi yechimini 
topishning iteratsion usullari 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ilmiybaza.uz CHIZIQLI ALGEBRAIK TENGLAMALAR SISTEMASINI TAQRIBIY YECHISH USULLARI Tayanch so‘z va iboralar: Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari
Ilmiybaza.uz 
 
 
III.1. Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion 
usullari 
 
a) 
, ,
1.. ,
ij
А
a
i j
n n







tartibli kvadrat matritsa, 
 




1
1
,...,
,
,...,
,
n
n
x
x
x
b
b
b
n


 o‘lchovli vektorlar bo‘lsa, Ax=b 
chiziqli sistema Gauss usuli bilan quyidagicha echiladi: 
 
To‘g‘ri yurish. Kengaytirilgan [A|b] matritsa uchburchak matritsaga 
keltiriladi.  












b
nn
n
n
n
n
b
a
a
a
b
a
a
a
b
a
a
a
...
. .
. . . . . . .
.
...
...
2
1
2
2
22
21
1
1
12
11
~ 

















)
1(
1
1( )
1( )
2
1)
(
1
2
(1)
2
1( )
22
1)
(
1
1
(1)
1
1( )
12
...
0
. . . . . . . .
.
...
0
...
1
nn
nn
n
n
n
n
n
a
a
a
a
a
a
a
a
a
~ 
 
            




















































)
(
1
1)
(
1
1
1)
(
1
2)
(
1
2
(2)
2
(2)
22
1)
(
1
1
(1)
1
(1)
13
(1)
12
2)
(
1
(2)
(2)
3
2)
(
1
(2)
3
(1)
33
2)
(
1
2
(2)
2
(2)
23
1)
(
1
1
(1)
1
(1)
12
(1)
12
0 0 ... 0 1
0
0 0 1
0
. . . . . . . . .
.
. . . . . . . . .
.
...
1
0
...
1
... ~
~
...
0
0
. .
.
.
.
.
. .
.
. .
.
.
.
. . . .
.
...
0
0
...
... 1
0
...
1
n
nn
n
n
n
n
n
n
n
n
n
n
nn
nn
n
n
n
n
n
n
n
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
 
 Teskari yurish. No’malumlar ketma-ket topiladi: 
                             
( )
( )
( )
1
1
1
,
,
1,
2,...,1.
n
n
i
i
n
nn
i
in
ij
i
j i
x
a
x
a
a x
i
n
n


 







 
 
b) Determinantni hisoblash. 
Ilmiybaza.uz III.1. Chiziqli algebraik tenglamalar sistemasi yechimini topishning iteratsion usullari a) , , 1.. , ij А a i j n n        tartibli kvadrat matritsa,     1 1 ,..., , ,..., , n n x x x b b b n    o‘lchovli vektorlar bo‘lsa, Ax=b chiziqli sistema Gauss usuli bilan quyidagicha echiladi: To‘g‘ri yurish. Kengaytirilgan [A|b] matritsa uchburchak matritsaga keltiriladi.             b nn n n n n b a a a b a a a b a a a ... . . . . . . . . . . ... ... 2 1 2 2 22 21 1 1 12 11 ~                  ) 1( 1 1( ) 1( ) 2 1) ( 1 2 (1) 2 1( ) 22 1) ( 1 1 (1) 1 1( ) 12 ... 0 . . . . . . . . . ... 0 ... 1 nn nn n n n n n a a a a a a a a a ~                                                     ) ( 1 1) ( 1 1 1) ( 1 2) ( 1 2 (2) 2 (2) 22 1) ( 1 1 (1) 1 (1) 13 (1) 12 2) ( 1 (2) (2) 3 2) ( 1 (2) 3 (1) 33 2) ( 1 2 (2) 2 (2) 23 1) ( 1 1 (1) 1 (1) 12 (1) 12 0 0 ... 0 1 0 0 0 1 0 . . . . . . . . . . . . . . . . . . . . ... 1 0 ... 1 ... ~ ~ ... 0 0 . . . . . . . . . . . . . . . . . . . ... 0 0 ... ... 1 0 ... 1 n nn n n n n n n n n n n nn nn n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a Teskari yurish. No’malumlar ketma-ket topiladi: ( ) ( ) ( ) 1 1 1 , , 1, 2,...,1. n n i i n nn i in ij i j i x a x a a x i n n            b) Determinantni hisoblash.
Ilmiybaza.uz 
 
(1)
(1)
12
1
12
1
(1)
(1)
22
2
21
22
2
11
11
1
1
2
(1)
(1)
2
1
...
...
0
...
...
det( )
. . . . . . .
,
. . . . . . . .
. . . .
. .
...
0
...
n
n
n
n
n
n
n
n
n
nn
n
nn
a
a
a
a
a
a
a
a
a
a
D
A
a
a D
a
a
a
a
a





                
(1)
(1)
22
2
(1)
1
11
(1)
(1)
2
...
1
. . . . . . ,
...
n
ij
ij
n
ij
ij
ij
n
nn
a
a
a
a
D
a
a a
a
a
a
 

. 
Bo‘lishda ishtirok etgan elementlar 
(1)
(
1)
11
, 22
,...,
n
nn
a
a
a

 bosh elementlar 
deyiladi. Buning davom ettirib quyidagi ifodaga kelamiz: 
                                   
1)
(
(1)
22
11
1
11
...

 

n
nn
n
n
a
a a
a D
D
, 
ya’ni determinant Gauss usulida bosh elementlarning ko‘paytmasiga teng. 
v) Progonka usuli  
0
0
0 1
0
1
1
1
,
,
1..
1,
i
i
i
i
i
i
i
n
n
n
n
n
b x
c x
d a x
b x
c x
d
i
n
a x
b x
d












 
uchburchak sistema uchun progonka usuli quyidagidan iborat 
 
1
1
0
0
,
,
0,...,
1,
0
i
i
i
i
i
i
i
i
i
i
i
i
C
d
a u
v
u
i
n
u
v
a v
b
a v
b




 









                         
(to‘g‘ri yurish), 
1
1
,
,
1,
2,...,0.
n
n
n
n
i
i
i
i
n
n
n
d
a u
x
x
v
x
u
i
n
n
a v
b













              
g)                    D()=det(A-E)=(-1)n(n-p1- n-1-…-pn)=0 
algebraik tenglama A-matritsaning xarakteristik tenglamasi deyiladi. Algebraning 
asosiy teoremasiga asosan, D()=0 tenglama n ta ildizga ega. Bu ildizlar A-
Ilmiybaza.uz (1) (1) 12 1 12 1 (1) (1) 22 2 21 22 2 11 11 1 1 2 (1) (1) 2 1 ... ... 0 ... ... det( ) . . . . . . . , . . . . . . . . . . . . . . ... 0 ... n n n n n n n n n nn n nn a a a a a a a a a a D A a a D a a a a a      (1) (1) 22 2 (1) 1 11 (1) (1) 2 ... 1 . . . . . . , ... n ij ij n ij ij ij n nn a a a a D a a a a a a    . Bo‘lishda ishtirok etgan elementlar (1) ( 1) 11 , 22 ,..., n nn a a a  bosh elementlar deyiladi. Buning davom ettirib quyidagi ifodaga kelamiz: 1) ( (1) 22 11 1 11 ...     n nn n n a a a a D D , ya’ni determinant Gauss usulida bosh elementlarning ko‘paytmasiga teng. v) Progonka usuli 0 0 0 1 0 1 1 1 , , 1.. 1, i i i i i i i n n n n n b x c x d a x b x c x d i n a x b x d             uchburchak sistema uchun progonka usuli quyidagidan iborat 1 1 0 0 , , 0,..., 1, 0 i i i i i i i i i i i i C d a u v u i n u v a v b a v b                (to‘g‘ri yurish), 1 1 , , 1, 2,...,0. n n n n i i i i n n n d a u x x v x u i n n a v b              g) D()=det(A-E)=(-1)n(n-p1- n-1-…-pn)=0 algebraik tenglama A-matritsaning xarakteristik tenglamasi deyiladi. Algebraning asosiy teoremasiga asosan, D()=0 tenglama n ta ildizga ega. Bu ildizlar A-
Ilmiybaza.uz 
 
matritsaning xos sonlari deyiladi. Agar 12….n bulsa 1 son maksimal xos son 
deyiladi. Uni iteratsiya usuli bilan topish mumkin: Ixtiyoriy y=y(0) vektor olinib 
y(k)=Ay(k-1), k=1,2,… vektorlar tuziladi. Ko‘rsatiladiki,  
( )
1
(
1)
lim
,
1.... ,
k
i
k
k
i
y
i
n
y


 

 bu erda y=[y1,….,yn]. Ya’ni  
           
n
i
y
y
y
y
k
i
k
i
k
i
k
i
1,....,
,
1)
(
1
)
(
1)
(
1
1)
(
2










 
 D()=0 tenglama ildizlari turli usullar bilan topiladi. 
Fadeev usulida  det(A),A-1  ,p1,…,pn sonlar quyidagicha topiladi: 
                       A1=A,      Sp(A1)=p1,     B1=A1-p1E, 
  
 
A2=AB1,      Sp(A2)/2=p2,     B2=A2-p2E, 
 
 
 
An=ABn-1,      Sp(An)/n=pn,     Bn=An-pnE,  A-1=Bn-1/pn ,det(A)=pn. 
 
                          
III.2. Bitta variantning yechilish tartibi 
 
1). Gauss usuli. 
 
 
 
A matritsa koeffitsientlari 
b o‘ng 
tomon 
 
3 
1 
1 
5 
 
1 
      3 
1 
5 
 
1 
1 
3 
5 
1-qadam 
1 
1/3 
1/3 
5/3 
 
0 
8/3 
2/3 
10/3 
 
0 
2/3 
8/3 
10/3 
2-qadam 
1 
1/3 
1/3 
5/3 
Ilmiybaza.uz matritsaning xos sonlari deyiladi. Agar 12….n bulsa 1 son maksimal xos son deyiladi. Uni iteratsiya usuli bilan topish mumkin: Ixtiyoriy y=y(0) vektor olinib y(k)=Ay(k-1), k=1,2,… vektorlar tuziladi. Ko‘rsatiladiki, ( ) 1 ( 1) lim , 1.... , k i k k i y i n y      bu erda y=[y1,….,yn]. Ya’ni n i y y y y k i k i k i k i 1,...., , 1) ( 1 ) ( 1) ( 1 1) ( 2           D()=0 tenglama ildizlari turli usullar bilan topiladi. Fadeev usulida det(A),A-1 ,p1,…,pn sonlar quyidagicha topiladi: A1=A, Sp(A1)=p1, B1=A1-p1E, A2=AB1, Sp(A2)/2=p2, B2=A2-p2E, An=ABn-1, Sp(An)/n=pn, Bn=An-pnE, A-1=Bn-1/pn ,det(A)=pn. III.2. Bitta variantning yechilish tartibi 1). Gauss usuli. A matritsa koeffitsientlari b o‘ng tomon 3 1 1 5 1 3 1 5 1 1 3 5 1-qadam 1 1/3 1/3 5/3 0 8/3 2/3 10/3 0 2/3 8/3 10/3 2-qadam 1 1/3 1/3 5/3
Ilmiybaza.uz 
 
 
0 
1 
1/4 
5/4 
 
0 
1 
4 
5 
3-qadam 
1 
1/3 
1/3 
5/3 
 
0 
1 
1/4 
5/4 
 
0 
0 
15/4 
15/4 
4-qadam 
 
 
1 
1 
   
 
1 
 
1 
 
1 
 
 
1 
 
Gauss usuli bilan echib ushbu  javobni oldik: x=[x1,x2,x3]=[1,1,1]. 
2). Zeydel iteratsiya usuli yechib javob olamiz: 
 
 
( )
(
1)
(
1)
1
2
3
(5
)/3
k
k
k
x
x
x





 
( )
( )
(
1)
2
1
3
(5
)/3
k
k
k
x
x
x




 
( )
( )
( )
3
1
2
(5
)/3
k
k
k
x
x
x



 
0 0 
0 
0 
1 x 1=  1.666667   
x 2=  1.111111   
  x 3=  0.740741   
2 x 1=  1.049383   
x 2=  1.069959   
  x 3=  0.960219   
3 x 1=  0.989941   
x 2=  1.016613   
  x 3=  0.997815   
4 x 1=  0.995190   
x 2=  1.002331   
  x 3=  1.000826   
5 x 1=  0.998948   
x 2=  1.  
  x 3=  1.000326   
6 x 1=  0.999866   
x 2=  0.999936   
  x 3=  1.000066   
            
3).  Determinantni   hisoblaymiz:         Det(A)=20. 
3
1
1
1 1/3 1/3
1
1/3
1/3
( )
1
3
1
31
3
1
3 0
8/3
2/3
1
1
3
1
1
3
0
2/3
8/3
1
1/3
1/3
1
1/3
1/3
1
1/3
1/3
8
8
8
5
8
5
3*
0
1
1/ 4
3*
0
1
1/ 4
3* *
0
1
1/ 4
3* *
20
3
3
3
2
3
2
0
2/3
8/3
0
0
5/ 2
0
0
1
Det A 








 
 
 
4). Teskari matritsani hisoblash ( 3.5 punktda ko‘rsatilgan) 
Ilmiybaza.uz 0 1 1/4 5/4 0 1 4 5 3-qadam 1 1/3 1/3 5/3 0 1 1/4 5/4 0 0 15/4 15/4 4-qadam 1 1 1 1 1 1 Gauss usuli bilan echib ushbu javobni oldik: x=[x1,x2,x3]=[1,1,1]. 2). Zeydel iteratsiya usuli yechib javob olamiz: ( ) ( 1) ( 1) 1 2 3 (5 )/3 k k k x x x      ( ) ( ) ( 1) 2 1 3 (5 )/3 k k k x x x     ( ) ( ) ( ) 3 1 2 (5 )/3 k k k x x x    0 0 0 0 1 x 1= 1.666667 x 2= 1.111111 x 3= 0.740741 2 x 1= 1.049383 x 2= 1.069959 x 3= 0.960219 3 x 1= 0.989941 x 2= 1.016613 x 3= 0.997815 4 x 1= 0.995190 x 2= 1.002331 x 3= 1.000826 5 x 1= 0.998948 x 2= 1. x 3= 1.000326 6 x 1= 0.999866 x 2= 0.999936 x 3= 1.000066 3). Determinantni hisoblaymiz: Det(A)=20. 3 1 1 1 1/3 1/3 1 1/3 1/3 ( ) 1 3 1 31 3 1 3 0 8/3 2/3 1 1 3 1 1 3 0 2/3 8/3 1 1/3 1/3 1 1/3 1/3 1 1/3 1/3 8 8 8 5 8 5 3* 0 1 1/ 4 3* 0 1 1/ 4 3* * 0 1 1/ 4 3* * 20 3 3 3 2 3 2 0 2/3 8/3 0 0 5/ 2 0 0 1 Det A          4). Teskari matritsani hisoblash ( 3.5 punktda ko‘rsatilgan)
Ilmiybaza.uz 
 
1
0.4
0.1
0.1
0.1
0.4
0.1
0.1
0.1
0.4
A






 









 
III.3. Masalaning Mathcad dasturida yechilishi. 
 
 4 ta usulda yechish mumkin. 
a) Teskari matritsa yordamida yechish 
A
3
1
1
1
3
1
1
1
3









b
5
5
5









x
A 1

 b

x
1
1
1









 
b) lsolve(A,b) protsedurasi yordamida yechish 
s
lsolve A b

(
)

s
1
1
1









 
v) Given..Find bloki yordamida yechish 
A
3
1
1
1
3
1
1
1
3









b
5
5
5









x
0
0
0









Given
A
 x
b
x
Find x
( )

x
1
1
1









 
g) Teskari matritsa va determinantni hisoblash 
A 1

0.4
0.1

0.1

0.1

0.4
0.1

0.1

0.1

0.4









d
 A
d
20

 
d) Jordan –Gauss usuli (rref(A|b) bilan echish. Avvalo, augmetnt(A,b) komanda 
yordamida kengaytirilgan matritsa B:=(A|b) tuziladi, so‘ng rref(A|b)  komanda 
(Jordan –Gauss usuli) V kengaytirilgan matritsaga qo‘llanilib sistema birlik 
Ilmiybaza.uz 1 0.4 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.4 A                  III.3. Masalaning Mathcad dasturida yechilishi. 4 ta usulda yechish mumkin. a) Teskari matritsa yordamida yechish A 3 1 1 1 3 1 1 1 3          b 5 5 5          x A 1   b  x 1 1 1          b) lsolve(A,b) protsedurasi yordamida yechish s lsolve A b  ( )  s 1 1 1          v) Given..Find bloki yordamida yechish A 3 1 1 1 3 1 1 1 3          b 5 5 5          x 0 0 0          Given A  x b x Find x ( )  x 1 1 1          g) Teskari matritsa va determinantni hisoblash A 1  0.4 0.1  0.1  0.1  0.4 0.1  0.1  0.1  0.4          d  A d 20  d) Jordan –Gauss usuli (rref(A|b) bilan echish. Avvalo, augmetnt(A,b) komanda yordamida kengaytirilgan matritsa B:=(A|b) tuziladi, so‘ng rref(A|b) komanda (Jordan –Gauss usuli) V kengaytirilgan matritsaga qo‘llanilib sistema birlik
Ilmiybaza.uz 
 
matritsaga keltiriladi, so‘ng hosil bo‘lgan matritsadan oxirgi ustun (javob) A-
reduced  komanda bilan kesib olinadi. 
ORIGIN
1

A
3
1
1
1
3
1
1
1
3









b
5
5
5









B
augment A b

(
)

B
3
1
1
1
3
1
1
1
3
5
5
5









rref B
( )
1
0
0
0
1
0
0
0
1
1
1
1









x
rref B
( )
4 

x
1
1
1









 
Mathcad dasturining qulay, soddaligi ko‘rinib turibdi. 
 
 
 
III.4. Oddiy iteratsiya usulining Mathcad da tashkil etishni ko‘ramiz. 
Ilmiybaza.uz matritsaga keltiriladi, so‘ng hosil bo‘lgan matritsadan oxirgi ustun (javob) A- reduced komanda bilan kesib olinadi. ORIGIN 1  A 3 1 1 1 3 1 1 1 3          b 5 5 5          B augment A b  ( )  B 3 1 1 1 3 1 1 1 3 5 5 5          rref B ( ) 1 0 0 0 1 0 0 0 1 1 1 1          x rref B ( ) 4   x 1 1 1          Mathcad dasturining qulay, soddaligi ko‘rinib turibdi. III.4. Oddiy iteratsiya usulining Mathcad da tashkil etishni ko‘ramiz.