CHIZIQSIZ TENGLAMALAR SISTEMANI YECHISH UCHUN NYUTON USULI
Yuklangan vaqt
2024-05-17
Yuklab olishlar soni
1
Sahifalar soni
9
Faytl hajmi
141,8 KB
Ilmiybaza.uz
CHIZIQSIZ TENGLAMALAR SISTEMANI YECHISH UCHUN NYUTON
USULI
Tayanch so‘z va iboralar: Chiziqsiz tenglamalar sistemasini yechishni ketma-ket
yaqinlashish usuli va Nyuton usullari
Ilmiybaza.uz
V.1. Chiziqsiz tenglamalar sistemasini yechishni ketma-ket yaqinlashish usuli
Bir noma’lumli f(x)=0 tenglamalarni taqribiy yechish usullari.
1) Iteratsiya usuli. Avvalo iteratsiya funksiyasi g(x) tanlab olinadi:
f(x)
0
x
g(x) , q
max g'(x) ,
,
1
x
a b
.
Iteratsiya funksiyasi g(x) ko‘p hollarda f(x)=0 tenglamadan unda ishtirok
etayotgan birorta x ga nisbatan echib olishdan kelib chiqadi. Masalan,
a)
( )
cos( )
0,
cos( )
( ),
( )
sin( )
1,
[0,1].
f x
x
x
x
x
g x
g x
x
x
b)
3
3
2
( ):
5
4
0,
(4
)/5
( ),
( )
3
/5,
[0,1],
( )
1.
f x
x
x
x
x
g x g x
x
x
g x
Lekin, [0,1] dan tashqaridagi echimlar uchun bu iteratsiya funksiyasi
yaramaydi.
c)
3
3
3
5
( ):
5
4
0,
[2,3],
5
4
( ),
( )
1,.
3 5
4
f x
x
x
x
x
x
g x
g x
x
Boshqa hollarda iteratsiya funksiyasi quyidagicha tanlab olinishi mumkin.
a) agar f’(x)>0 bo‘lsa (aks holda f1=-f=0 deyish kerak)
2
( )
( ),
( )
1
( ), 1
( )
1
0
,
max
'( ) ,
,
,
g x
x
lf x g x
lf
x
lf
x
l
M
f
x
a b
M
b) agar f’(x)<0 bo‘lsa f1=-f=0 desak,
(1)
(1)
(1)
1
1
1
1
2
( )
( )
( ),
( )
1
( ), 1
( )
1
0
,
max
( ) ,
,
,
g x
x
lf x
x
lf x g x
lf
x
lf
x
l
M
f
x
a b
M
deb olish mumkin. Jumladan,
1
2
l
M
M
deb olish mumkin.
Demak, ikkita hol bo‘lishi mumkin ekan:
a)
(
1)
( )
( )
1
1
( )
( )
( ), 0
( )
,
(
),
0,1,...
k
k
k
g x
x
lf x
x
f x
f
x
M x
x
f x
k
M
M
b)
(
1)
( )
( )
1
1
( )
( )
( ),
( )
0,
(
),
0,1,...
k
k
k
g x
x
lf x
x
f x
M
f
x
x
x
f x
k
M
M
Ilmiybaza.uz
s) Agar f(x)=0 tenglama x=g(x) ko‘rinishga keltirgandan keyin
aniqlansaki, max
( )
1
g x
q
, u holda
1
( )
( )
x
g
x
deb iteratsiyalarni
1 :
(
)
k
k
x
x
ko‘rinishda qurish kerak, chunki
( )
1/
( )
1
x
g x
bo‘ladi. Masalan,
2
2
( ),
( )
1/cos ( )
1,
( )
( ),( ( ))
1/(1
)
1
x
tg x tg x
x
x
x
arctg x
x
x
.
Iteratsiya funksiyasi g(x) tanlab olingach iteratsiyalar quyidagicha quriladi:
2,1 ,.....
,
,
),
(
(0)
1)
(
( )
a b k
x
g x
x
k
k
(0) ,
( )
x
q
х
k
л
1)
(
( )
)
(
1
k
k
k
x
x
q
q
x
.
2) Nyuton usuli
,)
('
( )
( ), ( )
0
( )
x
f
f x
x
g x g x
x
f x
( )
(
1)
(
),
1,2,....
k
k
x
g x
k
0
)
(''
)
(
(0)
(0)
x
f
f x
.
2
( )
(0))
1
,
k
x k
q
x
q
.)
('
min
,''
max
,
2
1
2
1
2
x
f
m
f
M
m
M
q
.
3) Uchinchi tartibli aniqlikdagi CHebыshev usuli (Nьyuton usulining rivoji)
2
(
1)
( )
3
( )
( )
( )
( )
0
( ), ( )
,
(
),
0,1,....
'( )
2
( )
k
k
f x
f
x f
x
f x
x
g x g x
x
x
g x
k
f
x
f
x
4) Yuqori tartibli Eyler usuli
(
1)
( )
(
1)
( )
( )
1
1
1
2
2
2
(
1)
( )
( )
2
1
1
2
1
2
1
2
1
2
(
),
(
),
(
),
(
( ))
( )(
( )
( )
,
(
),
(
).
( )
( )
(
( ))
i
k
k
k
k
k
r
i
k
k
k
r
x
g x
x
g
x
x
O h
xg g
x
g x g
x
g x
x
g x
x
O h
x
g x
g
x
g g
x
Jumladan,
2
(
1)
( )
( )
2
1
1
2
( ( )
( )
( )
( )
( )
,
(
),
(
).
2 ( )
( ( )
k
k
k
r
xg g x
g
x
g x
g
x
g x
x
g x
x
O h
x
g x
g g x
V.2. Tenglamani tekshirish. Ushbu tenglamalarni qaraymiz:
3
3
3
1( ):
6
12
0,
2( ):
6
12
0, 3( ):
5
4
0
f
x
x
x
f
x
x
x
f
x
x
x
Ravshanki,
Ilmiybaza.uz
3
1( ):
6
12
0
f
x
x
x
tenglama uchun, f1(1)=-7<0, f1(2)=8>0,
1
[1,2]
,
3
2( ):
6
12
0
f
x
x
x
tenglama uchun, f2(-3)=3>0, f2(-4)=-28<0,
2
[ 4, 3]
,
3
3( ):
5
4
0
f
x
x
x
tenglama uchun, f3(0)=-4<0, f3(1)=2>0, 3
[0,1]
Yana,
2
1( )
3
6
0,
[1,2],
1
max
1( )
18, 1 1/
1.
f
x
x
x
M
f
x
l
M
,
2
2 ( )
3(
2)
0,
[ 4, 3],
1
max
2 ( )
48, 1 1/
1.
f
x
x
x
M
f
x
l
M
2
3 ( )
3
5
0,
[0,1],
1
max
3 ( )
8, 1 1/
1.
f
x
x
x
M
f
x
l
M
Iteratsiya funksiyalari kiritamiz:
1( ):
1( )/
1
1( )/18
g
x
x
f
x
M
x
f
x
,
2( ):
2( )/
1
2( )/ 48
g
x
x
f
x
M
x
f
x
,
3
2
3( ): (4
)/5, 3 ( )
3
/5,
3 ( )
1,
[0,1]
g
x
x
g
x
x
g
x
x
.
Iteratsiyalarni quyidagicha quramiz:
1
1
1
1
:
1(
), 2
:
2(
), 3
:
3(
),
: 0.. , : 10.
k
k
k
k
k
k
x
g
x
x
g
x
x
g
x
k
n n