CHIZIQSIZ TENGLAMALAR SISTEMANI YECHISH UCHUN NYUTON USULI

Yuklangan vaqt

2024-05-17

Yuklab olishlar soni

1

Sahifalar soni

9

Faytl hajmi

141,8 KB


Ilmiybaza.uz 
 
 
 
 
 
 
 
 
 
CHIZIQSIZ TENGLAMALAR SISTEMANI YECHISH UCHUN NYUTON 
USULI 
 
 
Tayanch so‘z va iboralar: Chiziqsiz tenglamalar sistemasini yechishni ketma-ket 
yaqinlashish usuli va Nyuton usullari 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ilmiybaza.uz CHIZIQSIZ TENGLAMALAR SISTEMANI YECHISH UCHUN NYUTON USULI Tayanch so‘z va iboralar: Chiziqsiz tenglamalar sistemasini yechishni ketma-ket yaqinlashish usuli va Nyuton usullari Ilmiybaza.uz 
 
 
V.1. Chiziqsiz tenglamalar sistemasini yechishni ketma-ket yaqinlashish usuli 
 
Bir noma’lumli f(x)=0 tenglamalarni taqribiy yechish usullari. 
1) Iteratsiya usuli. Avvalo iteratsiya funksiyasi g(x) tanlab olinadi: 
 




f(x)
0 
 x
g(x)  ,  q
max g'(x) ,
,
1
x
a b





 . 
 
Iteratsiya funksiyasi g(x) ko‘p hollarda f(x)=0 tenglamadan unda ishtirok 
etayotgan birorta x ga nisbatan echib olishdan kelib chiqadi. Masalan,  
 
a)
( )
cos( )
0,
cos( )
( ),
( )
sin( )
1,
[0,1].
f x
x
x
x
x
g x
g x
x
x






 


 
b) 
3
3
2
( ):
5
4
0,
(4
)/5
( ),
( )
3
/5,
[0,1],
( )
1.
f x
x
x
x
x
g x g x
x
x
g x









 


 
Lekin, [0,1] dan tashqaridagi echimlar uchun bu iteratsiya funksiyasi 
yaramaydi. 
c) 
3
3
3
5
( ):
5
4
0,
[2,3],
5
4
( ),
( )
1,.
3 5
4
f x
x
x
x
x
x
g x
g x
x












 
Boshqa hollarda iteratsiya funksiyasi quyidagicha tanlab olinishi mumkin. 
 
a) agar f’(x)>0 bo‘lsa (aks holda f1=-f=0 deyish kerak)   




2
( )
( ),
( )
1
( ), 1
( )
1
0
,
max
'( ) ,
,
,
g x
x
lf x g x
lf
x
lf
x
l
M
f
x
a b
M





 

 
 

 
 
b) agar f’(x)<0 bo‘lsa f1=-f=0 desak,  




(1)
(1)
(1)
1
1
1
1
2
( )
( )
( ),
( )
1
( ), 1
( )
1
0
,
max
( ) ,
,
,
g x
x
lf x
x
lf x g x
lf
x
lf
x
l
M
f
x
a b
M





 

 
 

 
deb olish mumkin. Jumladan, 
1
2
l
M
M


 deb olish mumkin. 
 
Demak, ikkita hol bo‘lishi mumkin ekan: 
 
a) 
(
1)
( )
( )
1
1
( )
( )
( ), 0
( )
,
(
),
0,1,...
k
k
k
g x
x
lf x
x
f x
f
x
M x
x
f x
k
M
M











 
 
b) 
(
1)
( )
( )
1
1
( )
( )
( ),
( )
0,
(
),
0,1,...
k
k
k
g x
x
lf x
x
f x
M
f
x
x
x
f x
k
M
M












 
Ilmiybaza.uz V.1. Chiziqsiz tenglamalar sistemasini yechishni ketma-ket yaqinlashish usuli Bir noma’lumli f(x)=0 tenglamalarni taqribiy yechish usullari. 1) Iteratsiya usuli. Avvalo iteratsiya funksiyasi g(x) tanlab olinadi:     f(x) 0 x g(x) , q max g'(x) , , 1 x a b       . Iteratsiya funksiyasi g(x) ko‘p hollarda f(x)=0 tenglamadan unda ishtirok etayotgan birorta x ga nisbatan echib olishdan kelib chiqadi. Masalan, a) ( ) cos( ) 0, cos( ) ( ), ( ) sin( ) 1, [0,1]. f x x x x x g x g x x x           b) 3 3 2 ( ): 5 4 0, (4 )/5 ( ), ( ) 3 /5, [0,1], ( ) 1. f x x x x x g x g x x x g x              Lekin, [0,1] dan tashqaridagi echimlar uchun bu iteratsiya funksiyasi yaramaydi. c) 3 3 3 5 ( ): 5 4 0, [2,3], 5 4 ( ), ( ) 1,. 3 5 4 f x x x x x x g x g x x             Boshqa hollarda iteratsiya funksiyasi quyidagicha tanlab olinishi mumkin. a) agar f’(x)>0 bo‘lsa (aks holda f1=-f=0 deyish kerak)     2 ( ) ( ), ( ) 1 ( ), 1 ( ) 1 0 , max '( ) , , , g x x lf x g x lf x lf x l M f x a b M              b) agar f’(x)<0 bo‘lsa f1=-f=0 desak,     (1) (1) (1) 1 1 1 1 2 ( ) ( ) ( ), ( ) 1 ( ), 1 ( ) 1 0 , max ( ) , , , g x x lf x x lf x g x lf x lf x l M f x a b M              deb olish mumkin. Jumladan, 1 2 l M M   deb olish mumkin. Demak, ikkita hol bo‘lishi mumkin ekan: a) ( 1) ( ) ( ) 1 1 ( ) ( ) ( ), 0 ( ) , ( ), 0,1,... k k k g x x lf x x f x f x M x x f x k M M            b) ( 1) ( ) ( ) 1 1 ( ) ( ) ( ), ( ) 0, ( ), 0,1,... k k k g x x lf x x f x M f x x x f x k M M             Ilmiybaza.uz 
 
s) Agar f(x)=0  tenglama  x=g(x)  ko‘rinishga keltirgandan keyin 
aniqlansaki, max
( )
1
g x
q


  , u holda  
1
( )
( )
x
g
x

 
deb   iteratsiyalarni 
1 :
(
)
k
k
x
x
 
  
ko‘rinishda qurish kerak, chunki 
( )
1/
( )
1
x
g x



  bo‘ladi. Masalan,  
 
2
2
( ),
( )
1/cos ( )
1,
( )
( ),( ( ))
1/(1
)
1
x
tg x tg x
x
x
x
arctg x
x
x











 . 
 
Iteratsiya funksiyasi g(x) tanlab olingach iteratsiyalar quyidagicha quriladi: 
 
  


2,1 ,.....
,
,
),
(
(0)
1)
(
( )




a b k
x
g x
x
k
k
 
   
(0) ,
( )
x
q
х
k
л





 
1)
(
( )
)
(
1





k
k
k
x
x
q
q
x

. 
2) Nyuton usuli 
   
,)
('
( )
( ), ( )
0
( )
x
f
f x
x
g x g x
x
f x





( )
(
1)
(
),
1,2,....
k
k
x
g x
k



 
0
)
(''
)
(
(0)
(0)

x
f
f x
. 
    
2
( )
(0))
1
,
k
x k
q
x
q

 






 
.)
('
min
,''
max
,
2
1
2
1
2
x
f
m
f
M
m
M
q



. 
3) Uchinchi tartibli aniqlikdagi CHebыshev usuli (Nьyuton usulining rivoji) 
2
(
1)
( )
3
( )
( )
( )
( )
0
( ), ( )
,
(
),
0,1,....
'( )
2
( )
k
k
f x
f
x f
x
f x
x
g x g x
x
x
g x
k
f
x
f
x











 
4) Yuqori tartibli Eyler usuli 
(
1)
( )
(
1)
( )
( )
1
1
1
2
2
2
(
1)
( )
( )
2
1
1
2
1
2
1
2
1
2
(
),
(
),
(
),
(
( ))
( )(
( )
( )
,
(
),
(
).
( )
( )
(
( ))
i
k
k
k
k
k
r
i
k
k
k
r
x
g x
x
g
x
x
O h
xg g
x
g x g
x
g x
x
g x
x
O h
x
g x
g
x
g g
x


















 
Jumladan,   
2
(
1)
( )
( )
2
1
1
2
( ( )
( )
( )
( )
( )
,
(
),
(
).
2 ( )
( ( )
k
k
k
r
xg g x
g
x
g x
g
x
g x
x
g x
x
O h
x
g x
g g x












 
V.2. Tenglamani tekshirish. Ushbu tenglamalarni qaraymiz: 
 
3
3
3
1( ):
6
12
0,
2( ):
6
12
0, 3( ):
5
4
0
f
x
x
x
f
x
x
x
f
x
x
x











  
 
Ravshanki,  
Ilmiybaza.uz s) Agar f(x)=0 tenglama x=g(x) ko‘rinishga keltirgandan keyin aniqlansaki, max ( ) 1 g x q    , u holda 1 ( ) ( ) x g x    deb iteratsiyalarni 1 : ( ) k k x x   ko‘rinishda qurish kerak, chunki ( ) 1/ ( ) 1 x g x     bo‘ladi. Masalan, 2 2 ( ), ( ) 1/cos ( ) 1, ( ) ( ),( ( )) 1/(1 ) 1 x tg x tg x x x x arctg x x x             . Iteratsiya funksiyasi g(x) tanlab olingach iteratsiyalar quyidagicha quriladi:   2,1 ,..... , , ), ( (0) 1) ( ( )     a b k x g x x k k (0) , ( ) x q х k л      1) ( ( ) ) ( 1      k k k x x q q x  . 2) Nyuton usuli ,) (' ( ) ( ), ( ) 0 ( ) x f f x x g x g x x f x      ( ) ( 1) ( ), 1,2,.... k k x g x k    0 ) ('' ) ( (0) (0)  x f f x . 2 ( ) (0)) 1 , k x k q x q          .) (' min ,'' max , 2 1 2 1 2 x f m f M m M q    . 3) Uchinchi tartibli aniqlikdagi CHebыshev usuli (Nьyuton usulining rivoji) 2 ( 1) ( ) 3 ( ) ( ) ( ) ( ) 0 ( ), ( ) , ( ), 0,1,.... '( ) 2 ( ) k k f x f x f x f x x g x g x x x g x k f x f x            4) Yuqori tartibli Eyler usuli ( 1) ( ) ( 1) ( ) ( ) 1 1 1 2 2 2 ( 1) ( ) ( ) 2 1 1 2 1 2 1 2 1 2 ( ), ( ), ( ), ( ( )) ( )( ( ) ( ) , ( ), ( ). ( ) ( ) ( ( )) i k k k k k r i k k k r x g x x g x x O h xg g x g x g x g x x g x x O h x g x g x g g x                   Jumladan, 2 ( 1) ( ) ( ) 2 1 1 2 ( ( ) ( ) ( ) ( ) ( ) , ( ), ( ). 2 ( ) ( ( ) k k k r xg g x g x g x g x g x x g x x O h x g x g g x             V.2. Tenglamani tekshirish. Ushbu tenglamalarni qaraymiz: 3 3 3 1( ): 6 12 0, 2( ): 6 12 0, 3( ): 5 4 0 f x x x f x x x f x x x             Ravshanki, Ilmiybaza.uz 
 
3
1( ):
6
12
0
f
x
x
x



  tenglama uchun, f1(1)=-7<0, f1(2)=8>0, 
1
 [1,2]
, 
3
2( ):
6
12
0
f
x
x
x



  tenglama uchun, f2(-3)=3>0, f2(-4)=-28<0, 
2
[ 4, 3]
  
 , 
3
3( ):
5
4
0
f
x
x
x



  tenglama uchun, f3(0)=-4<0, f3(1)=2>0, 3
 [0,1]
 
Yana,  
2
1( )
3
6
0,
[1,2],
1
max
1( )
18, 1 1/
1.
f
x
x
x
M
f
x
l
M









, 
                    
2
2 ( )
3(
2)
0,
[ 4, 3],
1
max
2 ( )
48, 1 1/
1.
f
x
x
x
M
f
x
l
M





 




 
2
3 ( )
3
5
0,
[0,1],
1
max
3 ( )
8, 1 1/
1.
f
x
x
x
M
f
x
l
M









 
Iteratsiya  funksiyalari kiritamiz: 
                   1( ):
1( )/
1
1( )/18
g
x
x
f
x
M
x
f
x




, 
2( ):
2( )/
1
2( )/ 48
g
x
x
f
x
M
x
f
x




, 
3
2
3( ): (4
)/5, 3 ( )
3
/5,
3 ( )
1,
[0,1]
g
x
x
g
x
x
g
x
x




 


. 
Iteratsiyalarni quyidagicha quramiz: 
 
          
1
1
1
1
:
1(
), 2
:
2(
), 3
:
3(
),
: 0.. , : 10.
k
k
k
k
k
k
x
g
x
x
g
x
x
g
x
k
n n








 
 
 
 
Ilmiybaza.uz 3 1( ): 6 12 0 f x x x     tenglama uchun, f1(1)=-7<0, f1(2)=8>0, 1  [1,2] , 3 2( ): 6 12 0 f x x x     tenglama uchun, f2(-3)=3>0, f2(-4)=-28<0, 2 [ 4, 3]     , 3 3( ): 5 4 0 f x x x     tenglama uchun, f3(0)=-4<0, f3(1)=2>0, 3  [0,1] Yana, 2 1( ) 3 6 0, [1,2], 1 max 1( ) 18, 1 1/ 1. f x x x M f x l M          , 2 2 ( ) 3( 2) 0, [ 4, 3], 1 max 2 ( ) 48, 1 1/ 1. f x x x M f x l M            2 3 ( ) 3 5 0, [0,1], 1 max 3 ( ) 8, 1 1/ 1. f x x x M f x l M          Iteratsiya funksiyalari kiritamiz: 1( ): 1( )/ 1 1( )/18 g x x f x M x f x     , 2( ): 2( )/ 1 2( )/ 48 g x x f x M x f x     , 3 2 3( ): (4 )/5, 3 ( ) 3 /5, 3 ( ) 1, [0,1] g x x g x x g x x         . Iteratsiyalarni quyidagicha quramiz: 1 1 1 1 : 1( ), 2 : 2( ), 3 : 3( ), : 0.. , : 10. k k k k k k x g x x g x x g x k n n         Ilmiybaza.uz 
 
V.3. Masalaning Mathcad dasturida yechilishi. 
V.3.1. Polyroots komandasi bilan echish (ko‘phadli tenglama uchun o‘rinli). 
1)  
        
        
 
2) 
        
         
 
3) 
        
          
 
 
Ko‘rinib turibdiki, ikkita qo‘shma kompleks ildizlar ham bor ekan 
V.3.2. Nochiziq tenglama uchun iteratsiya usulini Mathcad da tashkil etamiz. 
 
 
   
   
  
   
 
    
   
  
 
     
   
  
   
 
 
 
 
   
  
  
  
 
   
   
  
   
 
    
    
   
   
 
 
 
v1
12

6
0
1









x1
polyroots v1
(
)

x1
0.73514
2.76067i

0.73514
2.76067i

1.47028









v1
12
6

0
1









x2
polyroots v1
(
)

x2
3.135

1.567
1.171i

1.567
1.171i










v1
4

5
0
1









x3
polyroots v1
(
)

x3
0.362
2.322i

0.362
2.322i

0.724









x
0

f1 x
( )
x3
 6 x
 12

x1
root f1 x
( ) x

(
)

x1
 1.4703
r1
f1 x1
(
)

r1
0

f2 x
( )
x3
 6 x
 12

x2
root f2 x
( ) x

(
)

x2
 3.1349
r2
f2 x2
(
)

r2
0.0006

f3 x
( )
x3
 5 x
 4

x3
root f3 x
( ) x

(
)

x3
 0.7241
r3
f3 x3
(
)

r3
0

x
2

f1 x
( )
x3
 6 x
 12

x1
root f1 x
( ) x

(
)

x1
 1.4703
r1
f1 x1
(
)

r1
0

f2 x
( )
x3
 6 x
 12

x2
root f2 x
( ) x

(
)

x2
 3.1349
r2
f2 x2
(
)

r2
0.0008

f3 x
( )
x3
 5 x
 4

x3
root f3 x
( ) x

(
)

x3
 0.7241
r3
f3 x3
(
)

r3
 0.0001
Ilmiybaza.uz V.3. Masalaning Mathcad dasturida yechilishi. V.3.1. Polyroots komandasi bilan echish (ko‘phadli tenglama uchun o‘rinli). 1) 2) 3) Ko‘rinib turibdiki, ikkita qo‘shma kompleks ildizlar ham bor ekan V.3.2. Nochiziq tenglama uchun iteratsiya usulini Mathcad da tashkil etamiz. v1 12  6 0 1          x1 polyroots v1 ( )  x1 0.73514 2.76067i  0.73514 2.76067i  1.47028          v1 12 6  0 1          x2 polyroots v1 ( )  x2 3.135  1.567 1.171i  1.567 1.171i           v1 4  5 0 1          x3 polyroots v1 ( )  x3 0.362 2.322i  0.362 2.322i  0.724          x 0  f1 x ( ) x3  6 x  12  x1 root f1 x ( ) x  ( )  x1  1.4703 r1 f1 x1 ( )  r1 0  f2 x ( ) x3  6 x  12  x2 root f2 x ( ) x  ( )  x2  3.1349 r2 f2 x2 ( )  r2 0.0006  f3 x ( ) x3  5 x  4  x3 root f3 x ( ) x  ( )  x3  0.7241 r3 f3 x3 ( )  r3 0  x 2  f1 x ( ) x3  6 x  12  x1 root f1 x ( ) x  ( )  x1  1.4703 r1 f1 x1 ( )  r1 0  f2 x ( ) x3  6 x  12  x2 root f2 x ( ) x  ( )  x2  3.1349 r2 f2 x2 ( )  r2 0.0008  f3 x ( ) x3  5 x  4  x3 root f3 x ( ) x  ( )  x3  0.7241 r3 f3 x3 ( )  r3  0.0001 Ilmiybaza.uz 
 
Turli xil boshlang‘ich o‘artlarda natija bir xil. 
 
V.3.3. Nochiziq tenglamalar uchun iteratsiya usulini tashkil etish. 
 
    
   
   
   
   
    
 
   
    
 
 
 
 
 
 
 
 
V.3.4. Nochiziq tenglamalar uchun Nьyuton iteratsiya usulini tashkil etish. 
 
    
   
    
    
   
 
   
     
 
 
 
 
 
 
 
 
g1 x
( )
x
f1 x
( )
18


g2 x
( )
x
f2 x
( )
48


g3 x
( )
4
x3

5

x10
 2
x20
 3
x30
 1
k
0 10


x3k 1

g3 x3k



x1k 1

g1 x1k



x2k 1

g2 x2k



x1T
0
1
2
3
4
5
6
7
8
0
2
1.5556
1.4946
1.4776
1.4725
1.471
1.4705
1.4703
1.4703

x2T
0
1
2
3
4
5
6
7
0
-3
-3.0625
-3.0969
-3.1152
-3.1248
-3.1297
-3.1323
-3.1336

x3T
0
1
2
3
4
5
6
7
8
0
1
0.6
0.7568
0.7133
0.7274
0.723
0.7244
0.724
0.7241

p1 x
( )
x
f1 x
( )
d
d

p2 x
( )
x
f2 x
( )
d
d

p3 x
( )
x
f3 x
( )
d
d

z10
 1
z20
 2
z30
5

z1k 1

z1k
f1 z1k


p1 z1k




z2k 1

z2k
f2 z2k


p2 z2k




z3k 1

z3k
f3 z3k


p3 z3k




z1T
0
1
2
3
4
5
6
7
8
0
1
1.5556
1.4728
1.4703
1.4703
1.4703
1.4703
1.4703
1.4703

z2T
0
1
2
3
4
5
6
7
0
-2
-4.6667
-3.628
-3.2104
-3.1371
-3.1349
-3.1349
-3.1349

Ilmiybaza.uz Turli xil boshlang‘ich o‘artlarda natija bir xil. V.3.3. Nochiziq tenglamalar uchun iteratsiya usulini tashkil etish. V.3.4. Nochiziq tenglamalar uchun Nьyuton iteratsiya usulini tashkil etish. g1 x ( ) x f1 x ( ) 18   g2 x ( ) x f2 x ( ) 48   g3 x ( ) 4 x3  5  x10  2 x20  3 x30  1 k 0 10   x3k 1  g3 x3k    x1k 1  g1 x1k    x2k 1  g2 x2k    x1T 0 1 2 3 4 5 6 7 8 0 2 1.5556 1.4946 1.4776 1.4725 1.471 1.4705 1.4703 1.4703  x2T 0 1 2 3 4 5 6 7 0 -3 -3.0625 -3.0969 -3.1152 -3.1248 -3.1297 -3.1323 -3.1336  x3T 0 1 2 3 4 5 6 7 8 0 1 0.6 0.7568 0.7133 0.7274 0.723 0.7244 0.724 0.7241  p1 x ( ) x f1 x ( ) d d  p2 x ( ) x f2 x ( ) d d  p3 x ( ) x f3 x ( ) d d  z10  1 z20  2 z30 5  z1k 1  z1k f1 z1k   p1 z1k     z2k 1  z2k f2 z2k   p2 z2k     z3k 1  z3k f3 z3k   p3 z3k     z1T 0 1 2 3 4 5 6 7 8 0 1 1.5556 1.4728 1.4703 1.4703 1.4703 1.4703 1.4703 1.4703  z2T 0 1 2 3 4 5 6 7 0 -2 -4.6667 -3.628 -3.2104 -3.1371 -3.1349 -3.1349 -3.1349  Ilmiybaza.uz 
 
 
 
 
Natijalar bir xil.  
Yana bitta eksperiment o‘tkazamiz. Boshlang‘ich iteratsiyalarni o‘zgartiramiz.  
 
   
   
 
 
 
 
 
 
Mustaqil ish uchun topshiriqlar. 
 1) 
3
2
( )
(1
)
(1
)
0,
1,2,.....
f x
x
k x
k x
k
k








  (аник ечим 𝜉 = 𝑘)  2)
3
( )
2
0,
1,2,...,
(0)
0,
( 6)
8(
27)
0,
27.
f x
x
kx
k
k
f
f
k
k











  
3) 
4
( )
2
0,
1,2,...,
(0)
0,
(1)
1
0,
1.
f x
x
kx
k
k
f
f
k
k






 


 
4) 
3
( )
2
0,
1,2,...,
(0)
0,
(1)
1
0,
1.
f x
x
kx
k
k
f
f
k
k






 


 
tenglamalar iteratsiya va Nьyuton usullari bilan taqribiy echilsin. 
z3T
0
1
2
3
4
5
6
7
0
-5
-3.075
-1.6229
-0.3526
0.7281
0.7241
0.7241
0.7241

z10
 2
z20
 1
z30
4

z1T
0
1
2
3
4
5
6
7
8
0
2
1.5556
1.4728
1.4703
1.4703
1.4703
1.4703
1.4703
1.4703

z2T
0
1
2
3
4
5
6
7
0
-1
-4.6667
-3.628
-3.2104
-3.1371
-3.1349
-3.1349
-3.1349

z3T
0
1
2
3
4
5
6
7
0
-4
-3.075
-1.6229
-0.3526
0.7281
0.7241
0.7241
0.7241

Ilmiybaza.uz Natijalar bir xil. Yana bitta eksperiment o‘tkazamiz. Boshlang‘ich iteratsiyalarni o‘zgartiramiz. Mustaqil ish uchun topshiriqlar. 1) 3 2 ( ) (1 ) (1 ) 0, 1,2,..... f x x k x k x k k         (аник ечим 𝜉 = 𝑘) 2) 3 ( ) 2 0, 1,2,..., (0) 0, ( 6) 8( 27) 0, 27. f x x kx k k f f k k            3) 4 ( ) 2 0, 1,2,..., (0) 0, (1) 1 0, 1. f x x kx k k f f k k           4) 3 ( ) 2 0, 1,2,..., (0) 0, (1) 1 0, 1. f x x kx k k f f k k           tenglamalar iteratsiya va Nьyuton usullari bilan taqribiy echilsin. z3T 0 1 2 3 4 5 6 7 0 -5 -3.075 -1.6229 -0.3526 0.7281 0.7241 0.7241 0.7241  z10  2 z20  1 z30 4  z1T 0 1 2 3 4 5 6 7 8 0 2 1.5556 1.4728 1.4703 1.4703 1.4703 1.4703 1.4703 1.4703  z2T 0 1 2 3 4 5 6 7 0 -1 -4.6667 -3.628 -3.2104 -3.1371 -3.1349 -3.1349 -3.1349  z3T 0 1 2 3 4 5 6 7 0 -4 -3.075 -1.6229 -0.3526 0.7281 0.7241 0.7241 0.7241  Ilmiybaza.uz 
 
Individual topshiriqlar 
 
T.r 
Topshiriklar 
a 
b 
c 
d 
1 
2 
3 
4 
5 
6 
f(x)=0 tenglamani eng kichik 
musbat echimi topilsin 
f(x)=tg (ax)-bx 
0,6319 
9,4637 
0,9464 
8,5174 
1,8927 
4,4164 
0,9217 
13,8249 
1,3825 
12,4424 
2,7650 
6,4516 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
7 
8 
9 
10 
11 
12 
f(x)=0 tenglamani eng katta 
musbat echimi topilsin 
f(x)=ln (ax)-bx+c 
0,3049 
9,1464 
0,6098 
8,5366 
0,9146 
7,9268 
0,3436 
10,3081 
0,6872 
9,6209 
1,0308 
8,9337 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
- 
- 
- 
- 
- 
- 
13 
14 
15 
16 
17 
18 
f(x)=0 tenglamani eng kichik 
musbat echimi topilsin 
f(x)=asin(bx)-cx 
 
0,33 
10 
1 
6,3 
1,67 
8 
 
2,3 
7,375 
2,2 
5,189 
2,5 
6,18 
0,5 
7,75 
1 
5 
1,5 
6,25 
 
- 
- 
- 
- 
- 
- 
19 
20 
21 
22 
23 
24 
25 
26 
 
 
f(x)=0 tenglama echilsin 
 
f(x)=a exp(-bx)-x 
0,312 
0,893 
0,0385 
0,944 
0,25 
0,67 
0,5 
0,6857 
0,7586 
0,52 
0,963 
0,51 
0,8 
0,6 
0,667 
0,56 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
Ilmiybaza.uz Individual topshiriqlar T.r Topshiriklar a b c d 1 2 3 4 5 6 f(x)=0 tenglamani eng kichik musbat echimi topilsin f(x)=tg (ax)-bx 0,6319 9,4637 0,9464 8,5174 1,8927 4,4164 0,9217 13,8249 1,3825 12,4424 2,7650 6,4516 - - - - - - - - - - - - 7 8 9 10 11 12 f(x)=0 tenglamani eng katta musbat echimi topilsin f(x)=ln (ax)-bx+c 0,3049 9,1464 0,6098 8,5366 0,9146 7,9268 0,3436 10,3081 0,6872 9,6209 1,0308 8,9337 0,5 1,0 1,5 2,0 2,5 3,0 - - - - - - 13 14 15 16 17 18 f(x)=0 tenglamani eng kichik musbat echimi topilsin f(x)=asin(bx)-cx 0,33 10 1 6,3 1,67 8 2,3 7,375 2,2 5,189 2,5 6,18 0,5 7,75 1 5 1,5 6,25 - - - - - - 19 20 21 22 23 24 25 26 f(x)=0 tenglama echilsin f(x)=a exp(-bx)-x 0,312 0,893 0,0385 0,944 0,25 0,67 0,5 0,6857 0,7586 0,52 0,963 0,51 0,8 0,6 0,667 0,56 - - - - - - - - - - - - Ilmiybaza.uz 
 
27 
0,982 
0,503 
28 
29 
30 
f(x)=0 tenglama echilsin 
f(x)= 
a x3+bx2+cx+d 
0,8896 
0,107 
1,2755 
 
-2,813 
-0,4613 
-3,601 
3,6929 
2,3738 
-1,37 
 
11,2 
5,44 
6,76 
 
Mavzu bo‘yicha savollar 
 
1. Iteratsiya usulining mohiyatini aytib bering. 
2.Tenglama iteratsiya usulini qo‘llash uchun qanday qilib ko‘rinishga kelitiriladi. 
3. Iteratsiya usulining yaqinlashish shartini ma’nosini aytib bering. 
 
Ilmiybaza.uz 27 0,982 0,503 28 29 30 f(x)=0 tenglama echilsin f(x)= a x3+bx2+cx+d 0,8896 0,107 1,2755 -2,813 -0,4613 -3,601 3,6929 2,3738 -1,37 11,2 5,44 6,76 Mavzu bo‘yicha savollar 1. Iteratsiya usulining mohiyatini aytib bering. 2.Tenglama iteratsiya usulini qo‘llash uchun qanday qilib ko‘rinishga kelitiriladi. 3. Iteratsiya usulining yaqinlashish shartini ma’nosini aytib bering.