CHIZIQSIZ TENGLAMALAR TAQRIBIY YECHISH METODLARI

Yuklangan vaqt

2024-05-17

Yuklab olishlar soni

1

Sahifalar soni

8

Faytl hajmi

191,1 KB


Ilmiybaza.uz 
 
 
 
 
 
 
CHIZIQSIZ TENGLAMALAR TAQRIBIY YECHISH METODLARI 
 
 
 
Tayanch so‘z va iboralar: Chiziqsiz tenglama ildizlarni taqribiy topish: oddiy iteratsiya, 
Nyuton, vatarlar usullari 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ilmiybaza.uz CHIZIQSIZ TENGLAMALAR TAQRIBIY YECHISH METODLARI Tayanch so‘z va iboralar: Chiziqsiz tenglama ildizlarni taqribiy topish: oddiy iteratsiya, Nyuton, vatarlar usullari
Ilmiybaza.uz 
 
 
IV.1. Chiziqsiz tenglama ildizlarni taqribiy topish  
 
 Oddiy iteratsiya usuli 
D
x x
x
x x
f
f x x




)
( ,
,0
)
( ,
,0
)
,
(
2
1
2
1
2
2
1 1
 tenglamalar sistemasi 
berilgan bo‘lsin.  
a) Iteratsiya usuli.  Tenglamalar sistemasi ekvivalent iteratsiya usulini qo‘llash  
uchun qulay ko‘rinishga keltirib olinadi: 
),
( ,
),
( ,
0
,0
2
1
2
2
2
1
1
1
2
1
x x
g
x
g x x
x
f
f





max
'( )
1
x D
q
g x
 
 . 
max
'( )
1
x D
q
g x
 
 -yaqinlashish sharti, 
1
( ), 2
g x g ( )
x -funksiyalar iteratsiya funksiyalari 
deyiladi.  
(0)
(0)
(0)
1
2
(
,
)
x
x
x

 boshlang‘ich iteratsiya tanlangach, iteratsiyalar quyidagicha 
quriladi: 
( )
(
1)
(
1)
( )
(
1)
(
1)
1
1
1
2
2
2
1
2
(
,
),
(
,
),
1,2,.....
k
k
k
k
k
k
x
g x
x
x
g x
x
k







 
Qoldiq had-aniq echim   bilan taqribiy echim 
( )
x k
 orasidagi farq norma 
2
D
 R
 
sohadagi normada quyidagicha beriladi: 
( )
( )
(0)
( )
( )
(
1)
,
1
k
k
k
k
k
q
x
q
x
x
x
x
q











 
IV.2. Nyuton iteratsiya usuli 
 
b) Soddalashtirilgan Nyuton usuli 
(0)
(0)
(0)
(0)
1 1
1
2
2
1
1
2
(0)
(0)
(0)
1
2
(0)
(0)
(0)
(0)
1
2
1
2
2
2
1
2
(
1)
(
1)
(0)
(0)
(0)
(0)
1
1
2
2
1
1
2
1 1
1
2
1
1
(
1)
(
1)
1
2
(
1)
(
1)
(0)
(0)
2
1
2
2
2
1
2
(
,
)
(
,
)
(
,
)
,
(
,
)
(
,
)
(
,
)
(
,
)
(
,
)
(
,
(
,
)
(
,
)
k
k
k
k
k
k
f x
x
f x
x
d
d x
x
f
x
x
f
x
x
f
x
x
f x
x
f x
x
f x
d
d
f
x
x
f
x
x

















(
1)
(
1)
2
(0)
(0)
(
1)
(
1)
1
2
1
2
2
1
2
,
)
(
,
)
(
,
)
k
k
k
k
x
f
x
x
f
x
x





(
1)
(
1)
( )
(
1)
( )
(
1)
1
2
1
1
2
2
(0)
(0)
,
k
k
k
k
k
k
d
d
x
x
x
x
d
d








 
v) Nyuton usuli 
1 1
2
1
1
2
1
1 1
1
1
2
1
1
1
2
2
2
1
2
1
2
2
2
2
2
2
1
2
2
( ,
)
,
( ,
)
,
( ,
)
f
f
f
f
f
f
d
d x x
d
d x x
d
d
x x
f
f
f
f
f
f














 
1)
(
2
1)
(
2
( )
2
1)
(
1
1)
(
1
( )
1
)
(
,
)
(








k
k
k
k
k
k
d
d
x
x
d
d
x
x
 
Ilmiybaza.uz IV.1. Chiziqsiz tenglama ildizlarni taqribiy topish Oddiy iteratsiya usuli D x x x x x f f x x     ) ( , ,0 ) ( , ,0 ) , ( 2 1 2 1 2 2 1 1 tenglamalar sistemasi berilgan bo‘lsin. a) Iteratsiya usuli. Tenglamalar sistemasi ekvivalent iteratsiya usulini qo‘llash uchun qulay ko‘rinishga keltirib olinadi: ), ( , ), ( , 0 ,0 2 1 2 2 2 1 1 1 2 1 x x g x g x x x f f      max '( ) 1 x D q g x    . max '( ) 1 x D q g x    -yaqinlashish sharti, 1 ( ), 2 g x g ( ) x -funksiyalar iteratsiya funksiyalari deyiladi. (0) (0) (0) 1 2 ( , ) x x x  boshlang‘ich iteratsiya tanlangach, iteratsiyalar quyidagicha quriladi: ( ) ( 1) ( 1) ( ) ( 1) ( 1) 1 1 1 2 2 2 1 2 ( , ), ( , ), 1,2,..... k k k k k k x g x x x g x x k        Qoldiq had-aniq echim  bilan taqribiy echim ( ) x k orasidagi farq norma 2 D  R sohadagi normada quyidagicha beriladi: ( ) ( ) (0) ( ) ( ) ( 1) , 1 k k k k k q x q x x x x q            IV.2. Nyuton iteratsiya usuli b) Soddalashtirilgan Nyuton usuli (0) (0) (0) (0) 1 1 1 2 2 1 1 2 (0) (0) (0) 1 2 (0) (0) (0) (0) 1 2 1 2 2 2 1 2 ( 1) ( 1) (0) (0) (0) (0) 1 1 2 2 1 1 2 1 1 1 2 1 1 ( 1) ( 1) 1 2 ( 1) ( 1) (0) (0) 2 1 2 2 2 1 2 ( , ) ( , ) ( , ) , ( , ) ( , ) ( , ) ( , ) ( , ) ( , ( , ) ( , ) k k k k k k f x x f x x d d x x f x x f x x f x x f x x f x x f x d d f x x f x x                  ( 1) ( 1) 2 (0) (0) ( 1) ( 1) 1 2 1 2 2 1 2 , ) ( , ) ( , ) k k k k x f x x f x x      ( 1) ( 1) ( ) ( 1) ( ) ( 1) 1 2 1 1 2 2 (0) (0) , k k k k k k d d x x x x d d         v) Nyuton usuli 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 2 2 2 2 1 2 2 ( , ) , ( , ) , ( , ) f f f f f f d d x x d d x x d d x x f f f f f f               1) ( 2 1) ( 2 ( ) 2 1) ( 1 1) ( 1 ( ) 1 ) ( , ) (         k k k k k k d d x x d d x x
Ilmiybaza.uz 
 
2
( )
(0)
2
1
2
1
1
,
,
2
max
( ) , min
( )
1.
k
k
x D
x D
M
x
q
x
q
q
m
M
f
x
f
x
m
















 
d) Minimizatsiya masalasiga keltirish 
2
2
1
2
( ):
( )
( ),min
( )
( )
0
x D
F x
f
x
f
x
F x
F 




  
Tenglamani iteratsiya usulini qo‘llash uchun qulay ko‘rinishga keltirish.(Iteratsiya 
funksiyalarini topish). Umumiy holda 
( ):
n
n
f x
D
R
R


 bo‘lsin. 
( )
0
f x  vektor 
tenglamani 
( )
( ),
:
n
n
x
g x
x
Lf x L R
R




,ekvivalent vektor 
tenglamaga olib kelamiz, bu erda 
,det( )
0.
L
ì àò ðèöà
L


 Ravshanki,  
 
1 1
1
1
( )
.
( )
( )
.
.
.
( )
.
( )
n
n
n
n
f x
f x
f
x
f
x
f
x







 







, 
1 1
1
1
1
0
0
( )
.
( )
( )
( )
0
1
0
.
.
.
0
0
1
( )
.
( )
n
n
n
n
f x
f x
g x
E
Lf
x
L
f
x
f
x






























 
max
'( )
1
x D
q
g x
 
  tengsizlik bajarilishi uchun quyidagi talablarni qo‘yish mumkin: 
1) 
( )
0
g x

 , bu erda  x -biror nuqta, jumladan, 
(0)
x
 x
-boshlang‘ich iteratsiya. 
Bu holda 
1
(
1)
( )
1
( )
[
( )] ,
[
( )]
(
),
0,1,....
k
k
k
L
f
x
x
x
f
x
f x
k









 va iteratsiyalar 
 
(
1)
( )
1
( )
[
( )]
(
),
0,1,....
k
k
k
x
x
f
x
f x
k






 
 
formula asosida quriladi. Bu soddalashtirilgan Nyuton  iteratsiya usuli. 
 
2) 
( ( )
)
0,
0,1,....
g x k
k



 
Bu holda 
( )
1
(
1)
( )
( )
1
( )
[
(
)] ,
[
(
)]
(
),
0,1,....
k
k
k
k
k
L
f
x
x
x
f
x
f x
k









 va iteratsiyalar  
 
(
1)
( )
( )
1
( )
[
(
)]
(
),
0,1,....
k
k
k
k
x
x
f
x
f x
k






 
 
formula asosida quriladi. Bu Nyuton iteratsiya usuli. 
Masalaning qo‘yilishi. Ushbu sistema yechilsin : 
 
Ilmiybaza.uz 2 ( ) (0) 2 1 2 1 1 , , 2 max ( ) , min ( ) 1. k k x D x D M x q x q q m M f x f x m                 d) Minimizatsiya masalasiga keltirish 2 2 1 2 ( ): ( ) ( ),min ( ) ( ) 0 x D F x f x f x F x F       Tenglamani iteratsiya usulini qo‘llash uchun qulay ko‘rinishga keltirish.(Iteratsiya funksiyalarini topish). Umumiy holda ( ): n n f x D R R   bo‘lsin. ( ) 0 f x  vektor tenglamani ( ) ( ), : n n x g x x Lf x L R R     ,ekvivalent vektor tenglamaga olib kelamiz, bu erda ,det( ) 0. L ì àò ðèöà L   Ravshanki, 1 1 1 1 ( ) . ( ) ( ) . . . ( ) . ( ) n n n n f x f x f x f x f x                 , 1 1 1 1 1 0 0 ( ) . ( ) ( ) ( ) 0 1 0 . . . 0 0 1 ( ) . ( ) n n n n f x f x g x E Lf x L f x f x                               max '( ) 1 x D q g x    tengsizlik bajarilishi uchun quyidagi talablarni qo‘yish mumkin: 1) ( ) 0 g x   , bu erda x -biror nuqta, jumladan, (0) x  x -boshlang‘ich iteratsiya. Bu holda 1 ( 1) ( ) 1 ( ) [ ( )] , [ ( )] ( ), 0,1,.... k k k L f x x x f x f x k          va iteratsiyalar ( 1) ( ) 1 ( ) [ ( )] ( ), 0,1,.... k k k x x f x f x k       formula asosida quriladi. Bu soddalashtirilgan Nyuton iteratsiya usuli. 2) ( ( ) ) 0, 0,1,.... g x k k    Bu holda ( ) 1 ( 1) ( ) ( ) 1 ( ) [ ( )] , [ ( )] ( ), 0,1,.... k k k k k L f x x x f x f x k          va iteratsiyalar ( 1) ( ) ( ) 1 ( ) [ ( )] ( ), 0,1,.... k k k k x x f x f x k       formula asosida quriladi. Bu Nyuton iteratsiya usuli. Masalaning qo‘yilishi. Ushbu sistema yechilsin :
Ilmiybaza.uz 
 
f(x,y)=x*x+y*y-1=0,g(x,y)=x*x-y=0. 
 
Birinchi tenglama birlik aylana, ikkinchi tenglama kvadratik paraboladir. Ular 1- 
va 4- choraklarda kesishadi va 2 ta haqiqiy ildizlarga ega. Uni Mathcad da grafik 
chizib ham ko‘ramiz.  
f x
( )
1
  x2

1
2

g x
( )
x2

x
4
4

y
10
10

5
0
5
0
10
20
f x
( )
g x
( )
x
 
Masalaning Mathcad dasturida yechilishi. 
a) Given ...Find bloki yordamida yechish  
 
x
 1
y
0

Given
x2
 y2
1
x2
 y
0
r
Find x y
( 
)

r
0.7861512594
0.6180339205



 
x
 1
y
0

Given
x2
 y2
1
x2
 y
0
r
Find x y
( 
)

r
0.7861512594

0.6180339205



 
 
b) iteratsiya usulini Mathcad da tashkil etish 
 
Ilmiybaza.uz f(x,y)=x*x+y*y-1=0,g(x,y)=x*x-y=0. Birinchi tenglama birlik aylana, ikkinchi tenglama kvadratik paraboladir. Ular 1- va 4- choraklarda kesishadi va 2 ta haqiqiy ildizlarga ega. Uni Mathcad da grafik chizib ham ko‘ramiz. f x ( ) 1   x2  1 2  g x ( ) x2  x 4 4  y 10 10  5 0 5 0 10 20 f x ( ) g x ( ) x Masalaning Mathcad dasturida yechilishi. a) Given ...Find bloki yordamida yechish x  1 y 0  Given x2  y2 1 x2  y 0 r Find x y (  )  r 0.7861512594 0.6180339205    x  1 y 0  Given x2  y2 1 x2  y 0 r Find x y (  )  r 0.7861512594  0.6180339205    b) iteratsiya usulini Mathcad da tashkil etish
Ilmiybaza.uz 
 
ORIGIN
1

g x
( )
1
0.5 cos x2
 


sin x1
 1


1.2




k
1 5


x
1
 
0.4
0.5



x
k 1
 

g x
k
  


x
0.4
0.5
0.5612087191
0.21455027

0.5114638779
0.2000459608

0.5099712771
0.2017596534

0.5101422642
0.2018492731

0.5101512458
0.2018388938




x
1
 
0.6

0.1




x
k 1
 

g x
k
  


x
0.6

0.1

0.5024979174
0.8105816577

0.6554614854
0.2023314299

0.5101996345
0.2035819541

0.5103256662
0.2018354178

0.510149857
0.2018277933




 
 
c) Nyuton usulini  Mathcad da tashkil etish 
 
s) Boshlang‘ich qiymat x0=[-1,0.5] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nyuton va soddalashtirilgan Nyuton usullari 
 
 
 
 
 
 
Nyuton usuli 
 
Sodda Nyuton usuli 
 
 
 
g x
( )
x1
 
2
x2
 
2

1

x1
 
2
x2








J x
( )
2 x1

2 x1

2 x2

1






k
1 5
 
x 1
 
1

0.5



y 1
 
x 1
 

x k 1
 

x k
 
J x k
  



1

g x k
  




y k 1
 

y k
 
J y 1
  



1

g y k
  




x
1

0.5
0.8125

0.625
0.786592

0.618056
0.786152

0.618034
0.786151

0.618034
0.786151

0.618034



ORIGIN
 1
Ilmiybaza.uz ORIGIN 1  g x ( ) 1 0.5 cos x2     sin x1  1   1.2     k 1 5   x 1   0.4 0.5    x k 1    g x k      x 0.4 0.5 0.5612087191 0.21455027  0.5114638779 0.2000459608  0.5099712771 0.2017596534  0.5101422642 0.2018492731  0.5101512458 0.2018388938     x 1   0.6  0.1     x k 1    g x k      x 0.6  0.1  0.5024979174 0.8105816577  0.6554614854 0.2023314299  0.5101996345 0.2035819541  0.5103256662 0.2018354178  0.510149857 0.2018277933     c) Nyuton usulini Mathcad da tashkil etish s) Boshlang‘ich qiymat x0=[-1,0.5] Nyuton va soddalashtirilgan Nyuton usullari Nyuton usuli Sodda Nyuton usuli g x ( ) x1   2 x2   2  1  x1   2 x2         J x ( ) 2 x1  2 x1  2 x2  1       k 1 5   x 1   1  0.5    y 1   x 1    x k 1    x k   J x k       1  g x k        y k 1    y k   J y 1       1  g y k        x 1  0.5 0.8125  0.625 0.786592  0.618056 0.786152  0.618034 0.786151  0.618034 0.786151  0.618034    ORIGIN  1