Elementar zvenolar va ularning xarakteristikalari. Proporsional, birinchi tartibli inersial (aperiodik), Ideal integrallovchi zveno
Yuklangan vaqt
2024-07-05
Yuklab olishlar soni
1
Sahifalar soni
11
Faytl hajmi
293,0 KB
Elementar zvenolar va ularning xarakteristikalari. Proporsional, birinchi
tartibli inersial (aperiodik), Ideal integrallovchi zveno
Элементар звенолар ва уларнинг характеристикалари
АБСларининг звенолари ҳар хил физикавий табиатга, ишлаш принципига,
конструктив формага ҳамда схемаларга бўлиниши мумкин. Лекин бу
звеноларнинг динамик хусусиятларини ўрганишда, тадқиқ қилишда унинг
чиқишидаги ҳамда киришидаги катталикларни боғловчи тенглама муҳим роль
ўйнайди.
Математик ифодаси дифференциал тенглама билан ифодаланадиган
звеноларга динамик звено дейилади.
Типик
динамик
звено
деб,
тартиби
иккидан
юšори
бўлмаган
дифференциал тенглама билан ифодаланадиган звеноларга айтилади. Уларга
асосан қуйидаги звенолар киради:
1. Инерциясиз (пропорционал, кучайтирувчи) звено.
2. Биринчи тартибли инерциал (апериодик) звено.
3. Идеал интегралловчи звено.
4. Идеал дифференциалловчи звено.
5. Тебранувчи звено.
6. Биринчи тартибли тезлатувчи звено.
7. Иккинчи тартибли тезлатувчи звено.
Қуйида шу звеноларнинг вақт ҳамда частотали харатеристикаларини
кўриб чиқамиз.
1. Инерциясиз (пропорционал, кучайтирувчи) звено. Бу звенонинг
умумий тенгламаси қуйидагича ифодаланади:
( )
( )
K x t
y t
,
(5.1)
бу ерда K – узатиш коэффициенти.
2
Бундай звенонинг чиқишидаги катталик киришидаги катталикка нисбатан
пропорционал равишда ўзгаради.
Бу звенога электрон кучайтиргич, потенциометр, тахогенератор каби
элементлар мисол бўла олади (1-расм.)
5.1-расм. Электрон кучайтиргич (а); потенциометр (б); тахогенератор (в),
бу ерда «ω» ўқнинг айланиш тезлиги.
(5.1) тенгламага Лаплас алмаштиришларини киритамиз
( )
( )
K x p
y p
,
(5.2)
бундан
K
p
x
y p
W p
)
(
( )
( )
.
(5.3)
Шундай қилиб, пропорционал звенонинг узатиш функцияси кучайтириш
коэффициенти «K» га тенг бўлади.
Узатиш
функцияси
орқали
звено
ёки
системанинг
вақт
характеристикаларини аниқлаш мумкин
ω(x)
UТГ(y)
ТГ
ŠЧ
в)
Uч(y)
Uк(x)
а)
Uч(y)
Uк(x)
б)
3
(1 )
1
( ) 1
( )
1
1
t
K
K p
L
W p p
L
h t
.
(5.4)
Частотавий узатиш функциясини аниқлаш учун узатиш функцияси W(p)
да «p» ни «jω» билан алмаштирилади
0
( )
( );
;
)
(
A
K
W j
,
K
A
L
20lg
( )
20lg
( )
.
Бу звеноларнинг частотали характеристикалари 5.2-расмда келтирилган.
h t( )
K
t
)
t(1
1
t
K
jV()
U()
АФХ
а)
A()
K
АЧХ
б)
L()
20lg K
ЛАЧХ
г)
()
ФЧХ
в)
4
5.2-расм. Амплитуда-фазали (а); амплитуда-частотали (б); фаза-
частотали (в); логарифмик амплитуда частотали (г) харакетистикалар.
2. Биринчи тартибли инерциал (апериодик) звено. Бу звенонинг
тенгламаси қўйидаги кўринишга эга.
( )
( )
( )
K x t
dt
T dy t
y t
(5.5)
бу ерда K – узатиш коэффициенти; T – вақт доимийлиги.
RC, RL – занжирлари, ўзгармас ток генератор ива двигателлари бу
звенога мисол бўла олади (5.3-расм).
ωдв(y)
Дв
г)
UЯ(х)
ŠЧ
ŠЧ
UŠ(х)
Г
EГ(y)
в)
R
L
U1(x)
U2(y)
б)
С
R
U1(x)
U2(y)
а)
5
5.3-расм. RC занжири (а); LR занжири (б); ўзармас ток генератори (в);
ўзгармас ток двигатели (г).
(5.5) тенгламага Лаплас ўзгартиришини киритиб, бу звенонинг узатиш
функциясини аниқлаймиз
( )
( )
( )
Kx p
Tp y p
y p
,
бундан
Tp
K
p
x
y p
W p
1
)
(
( )
( )
.
(5.6)
Инерциал звенонинг ўткинчи функцияси
) (1 )
1(
1
1
( ) 1
( )
1
1
t
e
K
p
Tp
K
L
W p p
L
h t
T
t
(5.7)
экспонента қонуни бўйича ўзгаради (5.4-расм). Импульсли ўткинчи функцияни
қуйидагича аниқлаш мумкин (5.4б-расм).
(1 )
1
( )
( )
( )
1
1
t
p e
K
pT
K
L
L W p
h t
t
T
t
(5.8)
h(t)
t
t
ω(t)
K
T
T
T
а)
б)
6
4-расм. Ўткинчи характеристика (а); импульсли ўткинчи характеристика
(б).
Звенонинг частотали узатиш функциясини ҳамда унинг частотали
характеристикаларини аниқлаш учун узатиш функцияси W(p) да «p»ни «jω»
билан алмаштириш керак (5.5-расм).
( )
( )
)
1(
)
1(
)
)(1
1(
)
1(
1
)
(
2
2
2 2
jV
U
T
K T
j
T
K
j T
T
j
j T
K
j T
K
W j
)
1(
)
(
2
2T
K
U
– ҳақиқий қисм;
)
1(
)
(
2T 2
K T
V
– мавҳум қисм.
2
2
2
2
1
( )
( )
)
(
T
k
V
U
A
;
arctg T
U
arctg V
)
(
( )
( )
;
jV(ω)
а)
U(ω)
ω=∞
ω=0
K
T
V
φ(ω)
A(ω
)
2
б)
ω
-φ(ω)
K
7
5.5-расм. Амплитуда-фазали характеристика (а); амплитуда-частотали
ва фаза-частотали характеристика (б).
Звенонинг логарифмик амплитуда частотали характеристикаси (ЛАЧХ)
қуйидаги ифода ёрдамида аниқланади:
2
2
2 2
20lg 1
lg
20
1
20lg
20lg ( )
( )
T
k
T
K
A
L
.
Бу звенонинг асимптотик ЛАЧХни
,
1
1
,
20lg
lg
20
,
1
0
1
0
,
lg
20
)
(
T булганда
ёки
T
T
K
T булганда
ёки
Т
K
La
тенглама билан ифодаланади.
Шундай
қилиб,
частотанинг
T
1
0
оралиғидаги
қийматларида
K=1бўлганда
L()
характеристикаси абсцисса ўқи билан мос тушади, чунки
0
20lg1
( )
L
. Агар
K 1
бўлса, унда шу частота оралиғида
L()
характеристикаси
20lg K
баландликда абсцисса ўқига параллел бўлган тўғри
чизиқ бўлади.
T 1
ёки
T
1
бўлганда
T
La
20lg
( )
га тенг бўлади (5.6-
расм).
20
40
-20
20lgK
0,1
0,01
1
10
100
K≠1
L(ω), дб
-20 дб/дек
ωT
8
.
40
( )
,
100
;
20
( )
,
10
;
0
( )
,1
дб
L
T
дб
L
T
дб
L
T
5.6-расм.
Шундай қилиб, инерциал звенонинг ЛАЧХ си туташ частота
T
1
ёки
T 1
гача ҳеч қандай ўзгаришсиз қолади ваш у частотадан кейин -20 дб/дек
оғиш бўйича ўзгаради.
Ҳақиқий ЛАЧХ
L()
асимптотик
Lа ()
характеристикадан бирмунча
фарқ қилади ва бу фарқ фақат туташ частота
T
1
ёки
T 1
да энг ката
қийматга
эга
бўлиб,
у
тахминан
–
3,03
дб
га
тенг,
яъни
дб
L
L
03
,3
2
lg 1
20
)1(
1
1
20lg
)1(
)
(
2
.
Амалиётда ЛАЧХ ни аниқ кўриш талаб қилинмайди. Шунинг учун уни
иккита бир-бири Билан тутушган тўғри чизиқ кўринишида қурилади.
Логарифмик фаза-частотали характеристика
arctgT
( )
ифода ёрдамида
аниқланади (5.7-расм).
9
90 .
( )
,
45 ;
( )
,1
0 ;
( )
,0
T
T
T
5.7 – расм.
Туташ
T
1
ёки
T 1
частотада
45
1
( )
arctg
га тенг бўлиб, шу
частотага нисбатан ЛФЧХ нинг симметриялиги унинг ўзига хос характерли
фазилати ҳисобланади.
3. Идеал интегралловчи звено. Бу звено
t
K x t dt
t
y
0
( )
( )
,
(5.9)
тенглама билан ифодаланади. Бу ерда K – узатиш коэффициенти. Унга электр
сиғим, индуктивлик, айланма ўқ ва х.к. мисол бўла олади.
(5.9) тенгламани Лаплас бўйича тасвири қўйидаги кўринишга эга:
( )
( )
p x p
K
y p
,
(5.10)
звенонинг узатиш функцияси
p
K
p
x
y p
W p
)
(
( )
( )
.
(5.11)
Бу звенони яна астатик звено деб ҳам юритилади.
Интеграл звенонинг ўткинчи функцияси
(1 )
1
( ) 1
( )
1
1
t
K t
p
p
K
L
W p p
L
h t
(5.12)
ва импульсли ўткинчи функцияси (вазн функцияси)
K
h t
t
( )
( )
(5.13)
0,1
0,01
1
10
-φ(ω)
-45º
-90º
ωT
10
5.8б-расмда келтирилган.
5.8-расм. Ўткинчи характеристика (а); импульсли ўткинчи
характеристика (б).
Интеграл звенонинг частотали узатиш функцияси
2
)
(
e j
K
j
K
j
W
(5.14)
бўлиб, унда
K
A
( )
– амплитуда частотали функция;
2
( )
– фаза
частотали функциялар (5.9-расм).
h(t)
t
t
ω(t)
K
а)
б)
аrctgK
jV()
U()
АФХ
а)
ω
0
ω=∞
A()
АЧХ
б)
-
()
ФЧХ
в)
2
11
5.9-расм. Амплитуда-фазали (а); амплитуда-частотали (б); фаза-
частотали (в) харакетистикалар.
Звенонинг АФХ си (5.14) ифодага мувофиқ комплекс текислигининг
манфий мавҳум ўқи билан мос тушади ва частота
0
бўлганда координата
ўқи бошига томон йўналган бўлади.
Логарифмик
амплитуда
частотали
характеристика
(ЛАЧХ)
20lg
20lg
20lg
20lg ( )
( )
K
K
A
L
ифода ёрдамида аниқланади (5.10-расм).
.
40
( )
01,
,0
;
20
( )
,1,0
;
40
( )
,
100
;
20
( )
,
10
;
0
( )
,1
дб
L
дб
L
дб
L
дб
L
дб
L
5.10- расм.
Демак, бу звенонинг
L()
характеристикаси координаталари
1
ва
20lg K
бўлган нуқтадан ўтган оғма тўғри чизиқ бўлиб, частота бир декадага
кўпайганда
L()
ординатаси 20 дб га камаяди. Шунинг учун
L()
характеристикасининг оғиши -20 дб/дек (минус 20 децебелл бир декадага деб
ўқилади).
20
40
-20
-40
20lgK
0,1
0,01
1
10
100
K≠1
L(ω), дб
-20 дб/дек
-20 дб/дек
K=1
ω(с-1)