HOSILAGA NISBATAN YECHILMAGAN BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMALAR VA ULARNI INTEGRALLASH USULLARI.
Yuklangan vaqt
2024-04-20
Yuklab olishlar soni
4
Sahifalar soni
8
Faytl hajmi
83,2Β KB
Ilmiybaza.uz
HOSILAGA NISBATAN YECHILMAGAN BIRINCHI TARTIBLI
DIFFERENSIAL TENGLAMALAR VA ULARNI INTEGRALLASH
USULLARI.
TaΚΌrif 1. Quyidagi koΚ»rinishdagi differensial tenglamaga
πΉ(π₯, π¦, π¦β²) = 0
Bunda F β uzluksiz funksiya, hosilaga nisbatan yechilmagan birinchi tartibli
differensial tenglama deyiladi.
Agar ushbu tenglamani π¦β² ga nisbatan yechishni iloji boΚ»lsa, u holda bitta yoki bir
nechta
π¦β² = π(π₯, π¦)
KoΚ»rinishdagi differensial tenglamalarga ega boΚ»lami. Bunday tenglamalarni
yechish usullarini esa boshqa mavzularda koΚ»rib chiqildi.
Differensial tenglamamiz π¦β² ga nisbatan yechishning iloji boΚ»lmasa, bunday
tenglamalarning asosiy yechish usuli bu β parametr kiritish usuli hisoblanadi. Shuni
taΚΌkidlash kerakki umumiy yechim differensial tenglamaning barcha yechimlarini
qoplamasligi mumkin. Umumiy yechimdan tashqari differensial tenglama maxsus
yechimlarga ham ega boΚ»lishi mumkin.
Bunday differensial tenglamalarni parametr kiritish usuli bilan yechishni ayrim
xususiy hollar uchun koΚ»rib chiqamiz:
Holat β1. Differensial tenglama π₯ = π(π¦, π¦β²) koΚ»rinishda boΚ»lsin.
π = π¦β² =
ππ¦
ππ₯ koΚ»rinishda parametr kiritamiz. π₯ = π(π¦, π¦β²) differensial tenglamani y
boΚ»yicha differensiallaymiz.
ππ₯
ππ¦ = π
ππ¦ [π(π¦, π)] = ππ
ππ¦ + ππ
ππ
ππ
ππ¦
ππ₯
ππ¦ =
1
π boΚ»lgani uchun, oxirgi ifodani quyidagicha koΚ»rinishda yozish mumkin:
1
π = ππ
ππ¦ + ππ
ππ
ππ
ππ¦
Ilmiybaza.uz
Oshkor koΚ»rinishdagi differensial tenglamaga ega boΚ»lamiz, uning umumiy yechimi
π(π¦, π, πΆ) = 0
Funksiya bilan tasvirlanadi, bunda C-ixtiyoriy konstanta.
Shunday qilib, boshlangΚ»ich differensial tenglamaning umumiy yechimi parametrik
koΚ»rinishda ikkita algebraik tenglamalar sistemasi bilan aniqlanadi.
{π(π¦, π, πΆ) = 0
π₯ = π(π¦, π)
Ushbu sistemadan p parametrni yoΚ»qotsak, u holda umumiy yechimni oshkor
koΚ»rinishda ifodalash mumkin π₯ = π(π¦, π).
Holat β2. Differensial tenglama π¦ = π(π₯, π¦β²) koΚ»rinishda boΚ»lsin.
Bu yerda ham yuqoridagi holatga oΚ»xshash holat, faqat y oΚ»zgaruvchi x va π¦β²
oΚ»zgaruvchilarga oshkor bogΚ»liq. π = π¦β² =
ππ¦
ππ₯ koΚ»rinishda parametr kiritamiz.
Differensial tenglama π¦ = π(π₯, π¦β²) ni x boΚ»yicha differensiallaymiz. Natijada:
ππ¦
ππ₯ =
π
ππ₯ [π(π₯, π)] =
ππ
ππ₯ +
ππ
ππ
ππ
ππ₯ yoki π =
ππ
ππ₯ +
ππ
ππ
ππ
ππ₯
Oxirgi differensial tenglamani yechib, π(π₯, π, πΆ) = 0 algebraik tenglamaga ega
boΚ»lamiz. BoshlangΚ»ich berilgan differensial tenglama bilan quyidagicha sistemani
hosil qiladi:
{π(π₯, π, πΆ) = 0
π¦ = π(π₯, π)
Ushbu Sistema berilgan differensial tenglamani umumiy yechimini parametrik
koΚ»rinishda ifodalaydi. Ayrim hollarda sistemadan p parametrni yoΚ»qotishni iloji
boΚ»lganda umumiy yechimni π¦ = π(π₯, πΆ) koΚ»rinishda yozish mumkin boΚ»ladi.
Holat β3. Differensial tenglama π₯ = π(π¦β²) koΚ»rinishda boΚ»lsin.
Ushbu holatda differensial tenglamada y oΚ»zgaruvchi qatnashmaydi. π = π¦β² =
ππ¦
ππ₯
koΚ»rinishda parametr kiritamiz. Tenglamaning umumiy yechimini qurish qiyin
emas, chunki ππ¦ = πππ₯ va
ππ₯ = π[π(π)] = ππ
ππ ππ
Oxirgi tenglamani integrallab, umumiy yechimni parametrik koΚ»rinishda olamiz;
Ilmiybaza.uz
{π¦ = β« π
ππ
ππ ππ + πΆ
π₯ = π(π)
Holat β4. Differensial tenglama π¦ = π(π¦β²) koΚ»rinishda boΚ»lsin.
Ushbu holatda differensial tenglamada x oΚ»zgaruvchi qatnashmaydi. π = π¦β² =
ππ¦
ππ₯
koΚ»rinishda parametr kiritamiz. ππ₯ =
ππ¦
π , bundan
ππ₯ = ππ¦
π = 1
π β ππ
ππ β ππ
kelib chiqadi, oxirgi ifodani integrallab, boshlangΚ»ich diferensial tenglamani
umumiy yechimining parametrik koΚ»rinishiga ega boΚ»lamiz.
{π₯ = β« 1
π
ππ
ππ ππ + πΆ
π₯ = π(π)
Misol 1. 9(π¦β²)2 β 4π₯ = 0 differensial tenglamaning umumiy yechimini toping.
Ushbu tenglama π₯ = π(π¦β²) 3-holatga mos keladi. π = π¦β² parameter kiritamiz va
tenglamani quyidagicha koΚ»rinishda yozamiz:
π₯ = 9
4 π2
Tenglamaning ikkala tomonidan ham integral olamiz:
ππ₯ = 9
4 2πππ = 9
2 πππ
ππ¦ = πππ₯ ekanligini eΚΌtiborga olsak, oxirgi ifodani quyidagicha yozish mumkin:
ππ¦
π = 9
2 πππ, βΉ ππ¦ = 9
2 π2ππ.
Oxirgi ifodani intetgrallab y oΚ»zgaruvchini p parameter orqali ifodsini topamiz:
π¦ = β« 9
2 π2ππ = 9
2 β« π2ππ = 9
2 β π3
3 + πΆ = 3
2 π3 + πΆ
Bunda C-ixtiyoriy oΚ»zgarmas. Shunday qilib tenglamaning umumiy yechimini
parametrik koΚ»rinishda topdik:
{
π¦ =
3
2 π3 + πΆ
π₯ =
9
4 π2
Ilmiybaza.uz
Ushbu sistemadan p parametrni yoΚ»qotish mumkin. Ikkinchi tenglamadan topamiz:
π2 = 4
9 π₯ βΉ π = Β± 2
3 π₯
1
2
Birinchi tenglamaga qoΚ»ygandan keyin oshkor π¦ = π(π₯) koΚ»rinishdagi umumiy
yechimga ega boΚ»lamiz:
π¦ =
3
2 π3 + πΆ = π¦ =
3
2 (Β±
2
3 π₯
1
2)
3
+ πΆ = Β±
3
2 β
8
27 β π₯
3
2 + πΆ = Β±
4
9 β π₯
3
2 + πΆ
LAGRANJ DIFFERENSIAL TENGLAMASI
TaΚΌrif. x va y ga nisbatan chiziqli boΚ»lgan koeffitsiyentlari esa π¦β² ning funksiyalari
boΚ»lgan differensial tenglamaga
πΉ(π¦β²) β π₯ + π(π¦β²) β π¦ + π (π¦β²) = 0
LAGRANJ DIFFERENSIAL TENGLAMASI deyiladi.
Ushbu tenglamani yechish algoritmi quyidagicha:
1) Umumiy yechimni topish uchun π = π¦β² oΚ»zgaruvchi almashtiriladi.
Differensial tenglama quyidagicha koΚ»rinishga keltiriladi:
π¦ = π₯ β π(π) + π(π)
bunda π(π) = β
πΉ(π¦β²)
π(π¦β²) , π(π) = β
π (π¦β²)
π(π¦β²)
2) Ushbu tenglamani π¦β² = π βΉ ππ¦ = πππ₯ ekanligini eΚΌtiborga olib
differensiallaymiz.
ππ¦ = π(π₯ β π(π) + π(π)) βΉ πππ₯ = π(π)ππ₯ + π₯ β πβ²(π)ππ + πβ²(π)ππ
3) x ga nisbatan chiziqli boΚ»lgan ushbu differensial tenglamaning yechimi
x=F(p,c) boΚ»lsa, u holda Lagranj differensial tenglamasining umumiy yechimi
quyidagicha boΚ»ladi:
{
π₯ = πΉ(π, π)
π¦ = π₯ β π(π) + π(π) = πΉ(π, π) β π(π) + π(π)
KLERO DIFFERENSIAL TENGLAMASI
TaΚΌrif. x va y ga nisbatan chiziqli boΚ»lgan koeffitsiyentlari esa π¦β² ning funksiyalari
boΚ»lgan quyidagicha differensial tenglamaga
Ilmiybaza.uz
π¦ = π₯ β π¦β² + π(π¦β²)
KLERO DIFFERENSIAL TENGLAMASI deyiladi.
Klero differensial tenglamasi Lagranj differensial tenglamasining xususiy holi
hisoblanadi. Ushbu differensial tenglamani yechish algoritmi quyidagicha:
1) π¦β² = π βΉ π¦ = π₯ β π + π(π)
2) π¦β² = π βΉ ππ¦ = πππ₯ βΉ ππ¦ = π(π₯ β π + π(π)) βΉ
π¦β²ππ₯ = πππ₯ + π₯ππ + πβ²(π)ππ βΉ πππ₯ = πππ₯ + π₯ππ + πβ²(π)ππ
Oxirgi ifodani dx ga boΚ»lamiz
π = π + π₯ ππ
ππ₯ + πβ²(π) ππ
ππ₯ βΉ (π₯ + πβ²(π)) ππ
ππ₯ = 0
3) {π₯ + πβ²(π) = 0
ππ = 0
βΉ
Birinchi yechim: ππ = 0 βΉ π = πΆ βΉ π¦ = πΆ β π₯ + π(πΆ)
Ikkinchi yechim esa: {π¦ = π₯ β π + π(π)
π₯ + πβ²(π) = 0 parametrik tenglamalar sistemasini yechish
orqali hosil qilinadi. Hosil boΚ»lgan F(x,y)=0 ikkinchi yechim ixtiyoriy oΚ»zgarmas
sonni oΚ»z ichiga olmaydi va umumiy yechimdan ham C ning biror bir qiymati orqali
hosil qilinmaydi, demak xususiy yechim emas. Bunday yechimlar maxsus yechim
(integral) hisoblanadi. Shunday qilib Klero tenglamasining maxsus yechimi
umumiy yechim (integral) bilan berilgan toΚ»gΚ»ri chiziqlar oilasining egilish chizigini
aniqlaydi, boshqacha qilib aytganda maxsus yechimning ixtiyoriy nuqtasiga
oΚ»tqazilgan urinma ham differensial tenglama yechimi boΚ»ladi.
https://upload.wikimedia.org/wikipedia/commons/b/b3/EnvelopeAnim.gif
Klero differensial tenglamasi koΚ»p hollarda analitik geometriyada 2-tartibli egri
chiziqlarni qurish uchun ishlatiladi. Egri chiziqni uning urinmasiga qoΚ»yilgan
xossalari boΚ»yicha aniqlaydigan geometrik masalalar Klero tenglamasiga olib keladi.
Ushbu xossa aynan urinmaga tegishli boΚ»lib, urinadigan nuqtaga tegishli emas.
Haqiqatdan ham urinma tenglamasi:
π β π¦ = π¦β²(π β π₯) yoki π = π¦β²π + (π¦ β π₯π¦β²)
Urinmaning har qanday xossasi (π¦ β π₯π¦β²) va π¦β² oΚ»rtasidagi munosabat bilan
aniqlanadi:
Ilmiybaza.uz
Π€(π¦ β π₯π¦β², π¦β² )=0
Ushbu tenglamani π¦ β π₯π¦β² ga nisbatan yechilsa, aynan
π¦ = π₯ β π¦β² + π(π¦β²) Klero tenglamasiga kelamiz.
Misol. π¦ = π₯ β π¦β² + (π¦β²)2
1) π¦β² = π βΉ π¦ = π₯ β π + π2
2) π¦β² = π βΉ ππ¦ = πππ₯ βΉ ππ¦ = π(π₯ β π + π2)
π¦β²ππ₯ = πππ₯ + π₯ππ + 2πππ βΉ πππ₯ = πππ₯ + π₯ππ + 2πππ
Oxirgi ifodani dx ga boΚ»lamiz
π = π + π₯
ππ
ππ₯ + 2π
ππ
ππ₯ βΉ (π₯ + 2π) ππ
ππ₯ = 0 β ushbu tenglama mumkin boΚ»lgan
ikki xil yechimga ega.
3) {π₯ + 2π = 0
ππ = 0
βΉ
1-yechim: ππ = 0 βΉ π = πΆ βΉ π¦ = πΆ β π₯ + π(πΆ) Klero tenglamasining
umumiy integrali (yechimi) toΚ»gΚ»ri chiziqlar
oilasini tashkil qiladi.
2-yechim: yechim parametrik koΚ»rinishda
tenglamalar sistemasidan topiladi:
{π¦ = π₯ β π + π2
π₯ + 2π = 0 β
ushbu sistemadan π ni yoΚ»qotib ikkinchi
yechimni topamiz
π = β π₯
2 β π¦ = π₯ β (β π₯
2) + (β π₯
2)
2
= β π₯2
4 β π¦ = β π₯2
4
Ikkinchi yechim ixtiyoriy oΚ»zgarmas sonni oΚ»z ichiga olmaydi va umumiy
yechimdan ham C ning biror bir qiymati orqali hosil qilinmaydi, demak xususiy
yechim emas. Bunday yechimlar maxsus yechim (integral) hisoblanadi.
https://www.desmos.com/calculator/c1gcgdzeec
BIRINCHI TARTIBLI DIFFERENTSIAL TENGLAMALARNI TAQRIBIY
YECHISHNING EYLER USULI.
Ilmiybaza.uz
Differensial tenglamalar kursini oΚ»rganish jarayonida maxsus koΚ»rinishlarga ega
boΚ»lgan differensial tenglamalarni yechish usullarini koΚ»rib chiqdik. Bu usullar juda
koΚ»p boshqa holatlarni qamrab ololmaydi. Shuning uchun ham tenglama
koΚ»rinishiga bogΚ»liq boΚ»lmagan universal usullarni qidirishga sabab boΚ»ldi.
Hisoblash mashinalarining rivojlanishi taqribiy sonli usullarni muvoffaqiyatli
qoΚ»llanilish imkoniyatini yaratdi.
Birinchi tartibli differensial tenglamalar uchun Koshi masalasidan boshlaylik.
Aytaylik
π¦β² = π(π₯, π¦), π₯0 β€ π₯ β€ π (1)
koΚ»rinishdagi differensial tenglamani
π¦(π₯0) = π¦0 (2)
boshlangΚ»ich shartni qanoatlantiruvchi yechimini topish masalasi yaΚΌni Koshi
masalasi berilgan boΚ»lsin. Umumiy holda Koshi masalasining yechimini topish
mumkin emas. π(π₯, π¦) funksiyaning maΚΌlum koΚ»rinishlaridagina (1) ni umumiy
yechimini topish usullari mavjud. Amaliy masalalarda koΚ»p hollarda differensial
tenglamalarni taqribiy yechish usullaridan foydalaniladi. Yechimni mavjudligi va
yagonaligi haqidagi teorema shartlari bajarilgan deb faraz qilamiz. π0(π₯0, π¦0) nuqta
atrofida π(π₯, π¦) funksiya x boΚ»yicha uzluksiz, y boΚ»yicha esa Lifshits shartini
qanoatlantirsin.
(1)-(2) Koshi masalasi yechimi y(x) ni π₯0 nuqtaning atrofida Teylor qatoriga
yoyamiz:
π¦(π₯) = π¦0 + (π₯ β π₯0)π¦β²(π₯0) +
(π₯βπ₯0)2
2!
π¦β²β²(π₯0) +
+
(π₯βπ₯0)3
3!
π¦β²β²β²(π₯0) +
(π₯βπ₯0)4
4!
π¦πΌπ(π₯0) + β― +
(3)
π₯0 nuqtaning kichik atrofida Teylor qatorining birinchi ikkita hadina olib, qolgan
hadlarini tashlab yuboramiz, natijada quyidagicha taqribiy formulaga kelamiz
π¦(π₯) β π¦0 + (π₯ β π₯0)π¦β²
(4)
Agar π¦β² ni (1) formuladagi koΚ»rinishidan foydalansak, u holda (4) formulani
quyidagicha koΚ»rinishda yozish mumkin:
π¦(π₯) β π¦0 + (π₯ β π₯0)π(π₯0, π¦0)
(5)
Ilmiybaza.uz
(5) formulani π₯0 β€ π₯ β€ π oraliqqa umumlashtirish uchun, ushbu oraliqni n ta
boΚ»lakka boΚ»lamiz. BoΚ»laklash qadami:
β = π β π₯0
π
; π₯π = π₯0 + πβ, π = 0, 1, 2, β¦ , π
Masala yechimini π₯π nuqtalarda jadval koΚ»rinishida topishni maqsad qilib qoΚ»yamiz.
Taqribiy π¦(π₯π) qiymatlarni (5) formula boΚ»yicha topamiz:
π¦π+1 β π¦π + β β π(π₯π, π¦π) π = 0,1,2, β¦ , π β 1
(6)
bunda π¦π+1 = π¦(π₯π+1), π¦π = π¦(π₯π). Ushbu formulaga Eyler usuli deyiladi. Eyler
usuli universal usul boΚ»lib, f(x,y) ning koΚ»rinishiga bogΚ»liq emas, lekin xatolik
nisbatan kata. Har qadamdagi xatolik π(β2) tartibida boΚ»lib, bu xatolik qadamba-
qadam ortib borib, b nuqtaga yetib borguncha xatolik π(β) gacha ortishi mumkin.
Misol 1. π¦β² = π₯ + π¦2 = π(π₯, π¦); π¦(0) = 0.3, [0;0.3] da h=0.1 qadam
bilan yechimning taqribiy qiymatlari Eyler usulida topilsin.
π₯0 = 0; π₯1 = 0.1 ; π₯2 = 0.2; π₯3 = 0.3; π¦0 = 0.3
Hisoblashlarni (6) formula boΚ»yicha amalga oshiramiz
π¦1 = π¦0 + β β π(π₯0, π¦0) = 0.3 + 0.1 β (0 + 0.32) = 0.309
π¦2 = π¦1 + β β π(π₯1, π¦1) = 0.309 + 0.1 β (0.1 + 0.3092) = 0.3285
π¦3 = π¦2 + β β π(π₯2, π¦2) = 0.3285 + 0.1 β (0.2 + 0.32852) = 0.3393
Eyler usuli dasturlash uchun qulay. (6) formula asosida ixtiyoriy (1)-(2) Koshi
masalasini, har qanday oldindan berilgan aniqlik bilan yechish mumkin. Aniqlikni
oshirish uchun qadamlar soni n ni koΚ»paytirish yetarli. Buning uchun quyidagicha
munosabatlardan foydalanamiz:
β =
πβπ₯0
π ; π = π(β2) = π; (
πβπ₯0
π )
2
= π
π β
πβπ₯0
βπ
(7)