Kirish
Ro'yhatdan o'tish
Barchasi
Dars ishlanmalar
IELTS AND CEFR
Kurs ishlari
Referat
slaydlar
Logarifm tenglama va tengsizliklar
Yuklangan vaqt
2024-03-25
Yuklab olishlar soni
2
Sahifalar soni
32
Faytl hajmi
2,4 MB
Yuklab olish
1 Logarifm mavzusi yechimlari
2 1.14.Logarifm. 1.14.1. Logarifmik funksiya va uning xossalari. 1(96-6-52) ) log3 (2 x y ; ; 2 2; 0; 2 x x x (A) 2(97-1-63) ;) log (3 x y x 3;1 1;0 ; 1 0 3 ; 1 0 0 3 x x x x x x x (C) 3(97-6-64) ;) log (6 ( ) x x f x 6;1 1;0 ; 1 0 6 ; 1 0 0 6 x x x x x x x (D) 4(97-8-52) 4 ;) 1 ( log 1 x y x ;2 2;1 ; 2 1 4 1 ; 1 1 0 1 0 4 1 x x x x x x x (B) 5(97-9-75) )1 5 lg( 2 x nx y funksiya berilgan oraliqda aniqlangan bo’lishi uchun 4 1 va 1 0 1 5 2 nx x tenglamaning ildizlari bo’lishi kerak. 4 1 va funksiyning aniqlanish sohasiga kiritilgan. Bunday bo’lishi mumkin emas. (D) 6(97-12-52) ) log 3 (6 x y x ; 6;1 1;0 ; 1 0 6 ; 1 0 0 6 3 3 x x x x x x x (E) 7(98-7-42) x x y 5 1 5 log log I va IV choraklardan o’tadi. (D) 8(98-5-15) 5 3 1 ; ; y y y juft funksiya. (D) 9(98-12-42) x y log3 ; I va IV choraklardan o’tadi. (A) 10(99-2-36) ;)1 lg( 8 ( ) x x f x 8;2 2;1 ; 2 1 8 ; 0 )1 lg( 0 1 0 8 x x x x x x x . Bu oraliqqa tegishli 6 ta butun son bor. (D) 11(99-3-26) 2 ; ) 1 ln( 1 x x y 1;0 ;2 0 ; 2 0 1 ; 0 2 0 ) 1 ln( 0 1 x x x x x x x (D) 12(99-5-39) x x x f 1 2 8 log 64 ( ) ; ; 8 ; 8 8 0; 64 8 64 1 2 1 1 x x x x x x 1 ; ;1 ; 1 2 x x x x (B)
3 13(99-6-29) ; log 3 log 3 3 x x x ;3 ; 0 0 3) ( x x x x (A) 14(97-7-15) )1 2 lg( 2 x kx y funkiya faqat x=1 nuqtada aniqlanmagan bo’lishi uchun 2 2 )1 ( 1 2 x x kx bo’lishi yoki k=1 bo’lishi kerak. (E) 15(99-8-34) y ; log 1 1 2 x x 1;0 0; 1 ; 0 0 1 ; 0 0 1 1 x x x x x x x (A) 16(99-8-36) 27 ;) )3 log (( 36 6 log ) ( 2 3 2 3 x x x f x 3 log 27 ) ( 3 min f x (D) 17(99-9-50) ; 9 2 4 ln 2 x x x y 9;8 ;0) ( ; 9 0 8) ( ; 0 9 0 2 4 2 x x x x x x x ; (E) 18(00-9-44) 3 2 5 3 log 81 ) ( x x f x ; ; 3 ; 3 3 0; 81 3 81 2 3 4 2 3 2 3 x x x x x x 0; )1 3)( 0 ; ( 3 4 3; 4 2 2 x x x x x x x ;3 1 (D) 19(96-3-90) 3; log log 3 5; log 2 1 4 1 2 1 b a 3; log 2 1 c 3; 3 5 b c a (E) 20(96-9-25) ;1 log 3 ;1 3 log 4 1 3 1 b a ;1 3 log 2 1 c b a c (A) 21(96-12-90) 3 2 log 6 3 ; 2 4 log 8 1 8 1 b a 3 ; 2 log 4 6 log 6 1 8 1 c a c b (B) 22(96-13-31) ; log 6 4; log 5 1 5 1 a b a ; 4 log 6 1 a c c a b (E) 23(98-9-32) q va l musbat. (C) 24(02-2-20) 1 2 log 2 1 (A) 25(99-9-47) m n va p 1 1 0 bo’lsa, 0 ;0 log log m n p p yoki 0 log log m n p p bo’ladi. (B) 26(0-3-43) d val musbat (E) 27(99-2-30) Hech qaysisi to’g’ri emas. (E) 28(01-1-29) ; 1 5 5) 6 ln( 2 2 x x x y ; 1 5 0 5 6 ; 0 1 5 0 5 6 2 2 2 2 x x x x x x 2 0 )1 5)( ( x x x ; ( ;2 5) ;1( 2) x (B) 29(01-3-21) ;) (6 log 2 10 x x y 0; 2) 3)( 0; ( 6 0; 6 2 2 x x x x x x 3 2 x . -1,0,1,2 butun sonlar ularning yig’indisi 2 ga teng. (C) 30(01-6-19) 0 ; 9 9 10 2 2 2 lg 9 x x y x ; I va II chorakdan o’tadi.
4 31(01-6-40) ; 2 6 log ) ( 1 2 x x x f x 6;0 0;2 ; 0 2 6 ; 1 1 0 2 0 6 2 x x x x x x x (С) 32(01-7-44) ; )1 lg( 9 ) ( 2 x x x f x ; 0 1 0 3) 3)( ( ; 0 0 1 0 9 2 x x x x x x x 3;1 x (E) 33(01-9-46) ; 9 25 30 13 log 2 2 x x x y 0; 9 25 30) 13 0; ( 9 25 30 13 2 2 2 2 x x x x x x 0; 3 5 3 5 15) 2)( ( x x x x 3;15 5 3 5 ;2 x . Bu oraliqqa 13 ta natural son tegishli (A) 34(01-9-47) ) ; 3 2 15 2 log 2 15 x x x y 0; 5,1 15) 2 0; ( 3 2 15 2 2 2 x x x x x x 0; 5,1 )5 3)( ( x x x ;5 5,1 ;3 x . Bu oraliqqa tegishli eng kichik butun son -2. log 7 2) ( 15 f (E) 35(98-7-21) 2 ;) lg( 9) lg( 3) lg( x x x ;3 ; 2 9 3 ; 0 2 0 9 0 3 x x x x x x x (D) 36(02-3-42) lg 3 ; 5 5lg 3 ; x y x y 10 ; 3 5 y x 5 5 3 10 10 ; 3 x y y x (A) 37(02-3-43) ; 6 1 )1 3 lg( x2 x x y ; 0 )2 3)( ( 3 1 ; 0 6 1 3 ; 0 6 0 1 3 2 2 x x x x x x x x x 3;3 1 x (A) 38(02-4-39) Funksiyaning OY o’qi bilan kesishish nuqtasida x=0 bo’ladi. 2 4 10 (0) lg(0 4) y (E) 39(02-7-20) 1 2 1 3 lg x x y ; ; 2 0 2 1 2 ; 0 2 0 1 2 1 3 x x x x x x 2 ; 1 ; 2 ; 2 0 2) 2 ( 1 x x x x (A) 40(02-9-29) ;) log (3 2 2 1 x y ; 3 2 ) (3 log ; 0 3 0 ) log (3 2 2 1 2 1 x x x x 3;1 ; 3 1 ; 3 4 3 x x x x x (B) 41(02-12-51) 4 ;) log ( 4 ) ( 2 2 x x f x ; 4 0 2) 2)( ( ; 0 4 0 4 2 x x x x x ;2 ;4 2 x (E) 42(03-4-40) x x x f x 2 1 log ) ( 2 ; 2;1 ; 2 1 0 1 ; 0 2 1 0 0 1 2 2 x x x x x x x x x (D) 43(03-4-41) 4; )1 log ( 5) 2 log ( ) ( 2 2 2 2 x x x f x
5 2 log 4 ) ( 2 min f x ; f (x) ;2 (E) 44(03-5-63) log 25; 2log 5 2 2 a 27,04; log 26 5 4log 23; log 23 1 3log 2 4 1 2 8 1 c b c a b (A) 4503-6-43) ;)1 lg( 1 | | 8 2 x x y 0 )1 1)( ( 0 | 8 | ; 0 )1 1)( ( 0 | 0 | 8 ; 0 1 0 1 | | 8 2 x x x x x x x x x x ; 8;1 ;8 1 ; 0 )1 1)( ( 0 8 8 x x x x x (D) 46(03-10-38) ; 1 ) ln(7 2 x x y ; 1 0 7) 7)( ( ; 0 1 0 7 2 x x x x x 7; ;1 7; 1 x Bu oraliqqa tegishli butun sonlar -2,0,1,2. Bularning yig’indisi 1 (B) 1.14.2. Logarifmik ifodalarni shakl almashtirish. 1(96-3-89) 3 2 2 2 2 2 3 log 4 2 3 log 4 1 16 3 4 log 4 316 log 1 (E) 2(96-6-53) 2 1 log 2 8 log 1 16 log 4 4 4 Q <2 ; (D) 3(96-9-31) 9 7 7 7 log7 9 9 7 log 3 3 1 9 7 log 3 3 (B) 4(96-12-89) 4 3 3 3 log3 4 4 3 log 2 2 1 4 3 log 2 (C) 5(96-13-30) 4 5 5 5 log5 4 4 5 log 3 3 1 4 5 log 3 3 (D) 6(97-2-53) 4; 2 6 log 4 2log 8 2 2 m log 400 log 25 2log 5 400 log 2 2 2 2 n 4 log2 16 ; 4; 3 1 log 5 log 125 5 5 p ;1 ln ln12 ln12 e e q q p m n (D) 7(975-37) ;1 log 2 lg100 log 2 2 (A) 8(97-8-53) 2 0 log 25 log 25 log 25 2log 5 2 2 2 2 (C) 9(97-9-37) 1 log 5 ln log 5 5 5 e (E) 10(97-12-52) 2log 5 log 30 2 2 1 30 log 25 log 30 25 log 2 2 2 ; (D) 11(98-4-15) ,0 05 20 1 20 20 5 20 5 5 lg 20 lg 5 1 lg 20 lg (D) 12(98-9-73) 3 log 729 9 log 729 log 9 2 2 (B) 13(98-11-46) 2log 128 128 log 8 2 2 3 ; 4 2 3 14 2 2log 7 23 (A) 14(98-12-74) 3 log 4 log 3 log 12 log 108 3 36 3 = log 4 log 108 log 12 log 36 3 3 3 3 = log 4 log (27 4) log (4 3) log (9 4) 3 3 3 3 = log 4) log 4 (3 log 4) )1 (2 4 (log 3 3 3 3 = log 4 3log 4 log 4 2 log 4 2log 4 2 3 3 3 2 3 3 =2 (B) 15(99-2-31) 10 10 10 100 lg27 2lg3 2 lg27 lg3 1 30 3 10 10 10 10 10 lg3 lg27 lg9 (C) 16(99-3-15) 3 3 3 5 9 5 9 5 2 1 2 1 5 3 log 1 1 log5 3 2 4 1 2 1 5,0 log 1 4 3 5 log (B) 17(99-6-13) 7 log 3 log 17 log 7 17 9 9 log 17 log 3 3
6 14 7 2 1 9 log 3 log 7 log 3 log 17 log 7 log 3 3 3 3 3 3 (A) 18(99-8-30) 1 2 1 lg ,0 026 lg28 (C) 19(00-1-35) 9 7 2 9 25 10 100 2 15 lg25 2lg5 lg15 (D) 20(00-1-39) A) 1 log 2 log 9 log 18 2 2 2 ; B) 8,4 3 3log 2 1 3 log 2 3log 6 3 3 3 ; C) 2 lg100 lg4 lg25 ; D) 4 log 13 169 log 4 13 2 13 ; E) 3 1 4 log 64 log 4 log 64 8 8 ; Javob: (B) 21(00-3-34) 8 4 7 343 2 3 2 3 log7 4 log49 4 (A) 22(00-7-32) n= 3 1 2 log 2 4 log 2 1 2 1 ; m= ;1 log 3 log 3 15 log 3 1 3 1 3 1 p= 2; ln 2 e -3<-2<-1 ; n<m<p (A) 23(00-10-42) 2log 512 512 log 8 2 2 = ;6 3 18 2 2log 9 23 (B) 24(96-9-84) 4 log 5 log 6 log 7 log 8 log 9 log 8 7 6 5 4 3 8 log 9 log 7 log 8 log 6 log 7 log 5 log 6 log 4 log 5 log 3 log 4 log 3 3 3 3 3 3 3 3 3 3 3 3 2 3 log 9 log 3 3 (D) 25(00-5-66) 2 log 3 log 4 log 5 log 6 log 7 log 8 7 6 5 4 3 8 log 7 log 7 log 6 log 6 log 5 log 5 log 4 log 4 log 3 log 3 log 2 log 2 2 2 2 2 2 2 2 2 2 2 2 3 1 8 log 2 log 2 2 (B) 26(00-7-31) 8 4 2 81 1 2log 3 log 2 log 3 3 2 (D) 27(00-8-43) 8 7 log 1 6 5 log 1 49 25 = 2log7 8 2log5 6 7 5 10 8 6 2 2 (A) 28(00-8-46) log6 36 1 lg2 log6 5 3 10 36 = 21 9 5 25 3 10 10 6 2 2 lg 2log6 5 (A) 29(98-1-33) 2log 7 14 log 2log 7 log 14 log 7 14 log 2 2 2 2 2 2 2 2 14 2log 7 log 2log 7 log 14 log 7 14 2log 14 log 7 log 2 2 2 2 2 2 2 2 2 2 14 2log 7 log )7 log 7(log 14 2log )7 14(log 14 2log log 2 2 2 2 2 2 2 2 1 7 14 log 14 2log 7 log )7 14 2log 7)(log 14 log (log 2 2 2 2 2 2 2 (D) 30(98-2-36) log 81 16 1 log log 9 log 48 27 log 3 3 3 3 3 5 4 1 4 16 48 1 3 log 9 log 3 3 (D) 31(98-8-33) log 18 log 2 2 log 2 log 18 2log 18 log 14 2 3 3 3 3 2 3 2 3 2log 18 log 2 2 log 2 2log 2 log 18 log 2 log 18 2log 18 2 3 3 2 3 3 3 3 3 2 3 2log 18 log 2 2 log 18(log 2 log 18) log 2(log 2 log 18) 2 3 3 3 3 3 3 3 3 2 18 2 log log 2 log 18 2 2 log 18)(2log 2 log 18) (log 3 3 3 3 3 3 3 (C) 32(99-1-28) 2 1 6 log 2 1 6 log6 log 1 2 1 2 1 2 1 log6 log )1 1)( 2 2 ( 1 2
7 1 2 log 1 2 6 2 1 log 2 1 log6 (A) 33(99-4-55) log 3 15 log 2log 3 2log 15 log 3 15 log 5 5 5 5 2 5 2 5 15 log 3 log )3 2(log 15 log )3 15 log 3)(log 15 log (log 5 5 5 5 5 5 5 5 )3 15 log (log )2 15 log 3)(log 15 log 3 (log 5 5 5 5 5 5 3 1 2 2 3 15 log5 (C) 34(96-1-33) log 5; log 5; 5; log 2 2 2 2 2 n n n 1 1 log 5 1 1 (2 5) log 1 2 lg 2 2 n (E) 35(96-10-36) 2 log 5; 3 5 log 125 log 2 3 22 4 a 3 ; 2 5 log2 a 3 2 18 3 2 1 6 log 5 1 6 10 log log 64 64 lg 2 2 2 a a (C) 36(96-9-28) log 25 2 log log 5 8 log 50 log log 40 40 log 2 2 2 2 2 2 50 a ; log 5; 3 2 log 5 2log 5; 1 log 5 3 2 2 2 2 a a a 1 ; 2 3 ; log 5 3 1 5 2 log 2 2 a a a a 3 ; 2 1 log5 2 a a (E) 37(96-3-86) log 49 2 log log 7 8 log 98 log log 56 56 log 7 7 7 7 7 7 98 a ; ;1 3log 2 2 log 2 2 ; 2 log 1 log 2 3 7 7 7 7 a a a ; 3 1 2 2 ; log 2 1 3 2 log 7 7 a a a a (B) 38(96-12-86) log 49 3 log log 7 9 log 147 log log 63 63 log 7 7 7 7 7 7 147 a ; ;1 2log 3 2 log 3 2 ; 3 log log 3 1 2 7 7 7 7 a a a 2 ; 2 1 2 ; log 3 1 2 3 log 7 7 a a a a (A) 39(96-13-27) log 25 3 log log 5 9 log 75 log log 45 45 log 5 5 5 5 5 5 75 a ; ;1 2log 3 2 log 3 2 ; 3 log log 3 1 2 5 5 5 5 a a a 2 ; 2 1 2 ; log 3 1 2 3 log 5 5 a a a a (A) 40(98-2-33) 3,0 ; 4,2 ; log 2 8log 2 log 2 256 log 8 a a a a 3,0 log 2 log 2 log 4 a a a (E) 41(98-3-30) log 9 4 log log 27 4 log 36 log log 108 108 log 2 2 2 2 2 2 36 a ; 3log 3; 2 2 log 3 2log 3; 2 2 3log 3 2 2 2 2 2 a a a 3 ; 2 ) 2 1( 2 ; log 2 2 3 3 2 log 7 2 a a a a (C) 42(98-10-77) log 3 2 log log 27 4 log 6 log log 108 108 log 2 2 2 2 2 2 6 a ; 3log 3; 2 log 3 log 3 ; 1 3log 3 2 2 2 2 2 a a a ; 3 2 ; log 3 2 3 3 log 2 2 a a a a (D) 43(00-1-88) ; log 3 4 log 1 12 log 1 2 log 2 2 2 12 a 2 ; 1 log 3; log 3 2 1 2 2 a a a
8 a 2a 1 1 4 log 3 2 log 4 6 log log 16 16 log 2 2 2 2 6 a a 1 4 (C) 44(00-1-41) a a 2 2 8 2 2 log log ) log (log a a 2 2 2 2 log log ) log (8log = 3 log log log log 8 log 2 2 2 2 2 a a (C) 45(00-6-32) 5,0 log 3 5,0 log log 27 27 log 3 3 3 5,0 a ; 3 ; 5,0 log3 a 5,0 3 log 1 3 log 3 1 5,1 6 log 2 5,1 log 3 3 3 6 3 1 3 1 1 3 1 3 3 1 3 1 a a a (A) 46(00-10-31) a log2 3; log 4 3 log 3 1 4 3 log 3 1 ,0 75 log 2 2 2 8 2 3 1 2 3 log 3 1 2 a (C) 47(00-10-66) 3 ; 3 ; ; 27 log 3 3 b b a a a b b b a a b 1 3 3 1 3 log 3 1 6 log 2 log 3 3 3 6 3 (A) 48(97-4-33) ; ; lg7 lg2 b a lg5 7 lg 5 lg 5 lg lg7 1 1 log 7 1 1 35 log 1 5 log 5 5 35 b a a 1 1 lg7 lg2 1 lg2 1 (B) 49(97-9-73) ; ; log 5 20 log 3 3 b a log 4; 1 log 4 log 5 log 20 5 log 20 log 5 5 5 5 3 3 b a ; ; log 5 4 log 4 5 b a b b b a 1 3log 5 log 125 log 4 log 500 4 4 4 4 b a b a b a b 2 3 1 (C) 50(98-11-44) ; ; log 10 2 log 2 7 b a log 10 2 log 392 1 10 2 log 392 1 39 2, log 2 2 2 4 3 log 10 log 7 2 2 1 49 log 8 log 10 log 2 1 2 2 2 2 2 2 2 3 1 3 2 2 1 b a b a (B) 51(99-7-30) ; ; log 5 3 log 2 2 b a log 5 9 log log 5 27 log 45 log log 135 135 log 2 2 2 2 2 2 45 b a b a 2 3 log 5 log 3 2 log 5 log 3 3 2 2 2 2 (A) 52(99-10-35) ;9 2; log ;4 2; log 3 2 b b a a 2 log 36 log (9 4) ) log ( 6 6 6 ab (E) 53(00-3-33) 6 3; log 2; log log x x x c b a ; c b a abc x x x x x abc log log log 1 log 1 log 1 6 1 3 1 2 1 1 (C) 54(00-3-35) ; ; log 5 7 log 14 14 b a log 5 7 log log 7 2 (7 5) log 7 196 log 35 log 28 log 28 log 14 14 14 14 14 14 14 35 b a a 2 (A) 55(00-8-38) ; ; lg3 lg5 b a b a 1 3 3 lg3 1 3lg5 3 )3 10 lg( 125 1000 lg 30 lg lg8 log30 8 (A) 56(00-10-39) ; ; log 10 2 log 2 7 b a log 10 (49 16) log 2 1 10 784 log 2 1 78 4, log 2 2 2 4
9 2 2 1 4 2 2log 7 1 2 b a b (D) 57(01-2-29) 2 1 2 1 4 4 2 2 log log b a a b 2 1 2 1 2 2 4 4 2 log 2log log log b a b a a b a b 2 1 2 1 2 2 2 2 log log b a a b 2 1 2 2 2 log log b a a b 2 1 2 2 log 2log log log b a b a a b a b ;| log | log log log 2 1 2 b a b a a b a b b a 1 bo’lgani uchun a b b a b a a b log log | log | log (A) 58(01-3-14) 4 8 2 2 4 4 6 4 3 2 3 2 2 log2 (C) 59(01-3-28) ; 7 0; 0; 2 2 ab b a b a ; 3 ; 9 ) ( 2 ab b ab a b a 1 ) lg( ) lg( ) lg( lg 2 lg lg 3 lg 2 ab ab ab ab b a b a (A) 60(01-5-16) 4 1 4 49 5 1 7 49 5 49 log5 4 7 2 2 log log5 4 1 log7 2 12 5, 4 50 (A) 61(01-6-36) log 3 log 15 log 20 2log 12 2 2 2 2 3 15 log 144 20 log 3 log 15 log 20 log 144 2 2 2 2 2 6 log2 64 (E) 62(01-6-37) log 9 log 5 lg8 log 10 3 5 2 5 2 3 5 log 5 log log 9 10 log 10 log 8 log 3 3 3 2 2 2 (D) 63(01-7-29) 8,0 1 9log3 8 log65 5 log65 5 3log3 8 2 1 8,0 = 4 5 8,0 65 8,0 log65 5 (C) 64(01-7-24) ; ; lg7 lg2 b a lg2 1 1 lg2 lg7 2 5 lg 1 98 lg 10 log 98 8,9 log 5 5 = a b a 1 1 2 (B) 65(01-8-31) ; 3 3 ; log 3 ; 3log 27 log 2,0 2,0 2,0 a a a 2,0 ) log 3 (2 1 2,0 ) 6 log (9 2 8,1 log 3 3 6 3 a a 1 3 2 3 3 2 1 (E) 66(01-9-10) 2 3 2 lg 3 2 lg 3 2 lg 4 3 7 lg 2 (A) 67(01-9-17) 16 9 2 lg 1 lg 8 9lg lg ) ( lg ) ( lg 3 2 2 3 3 2 x x x x x x (A) 68(01-9-26) 4+ 3 ; 16 4 1 1 4 4 1 1 16 3 3 16 1 5 1 5 1 2,0 3 16 5 log 3 16 5 log 4 5 4 1 1 log (A) 69(01-10-16) 6 ; 1 2 1 1 4 1 32 1 16 1 8 1 4 1 2 6 1 8 log 6 1 log8 2 32 1 16 1 8 1 4 1 2 2 log 8 1 8 1 125 ,0 36 6 1 1 2 (C)
10 70(01-10-33) 3 4 2 5 4 2 8 3 4 5 2 3 log 5 4 log log 3 2 log 125 log 16 1 log 81 1 256 log log 3 51 3 16 3 log 4 log 5 2 8 log 2 log 3 4 4 5 2 3 (С) 71(01-11-25) 2 log 243 log 5 log 4 log 3 2 4 5 4log 3 log 4 log 4 2 log 5 log 3 log 3 4 3 5 4 2 5 =5 (С) 72(01-11-26) 13 1300 lg lg )5 (lg2 3 1300 lg13 lg 3lg2 3lg5 5,1 2 3 100 lg 3lg10 (E) 73(01-11-27) ; ; log 4 log 4 5 3 b a log 5 2log 3 log 5 log 9 log 45 4 4 4 4 4 ab a b b a b a 2 1 2 1 2 1 (E) 74(01-11-55) t 3 3 3 2 245 2 83 log ; x 3 3 3 2 245 2 83 log bo’lsin. t x 3 3 3 2 245 2 83 log + 3 3 3 2 245 2 83 log 3 3 3 3 3 2 245 2 83 2 245 2 83 log 3 3 3 3 3 3 241 81 log 2 245 2 83 log 3; log 3 3 log ( 3 3 3 3 5 4 3 t x x t 3 3; (D) 75(02-2-21) ; lg5 c 1 2 1 2lg5 lg10 lg25 lg250 c (A) 76(02-2-53) 5 log 150 log 5 log 30 log 6 5 30 5 log 30) log 6(log 5 30 log 5 5 5 2 5 log 6 log 30 log 6 30 log 5 5 5 2 5 log 6 log 6) 30(log 30 log 5 5 5 5 1 log 5 log 6 30 log 5 5 5 (A) 77(02-3-22) ;1 0; a a 3 2 3 log 2 log 3 a a a a (A) 78(02-3-33) log 128 log 64 log 32 16 log log 8 log 4 log 2 4 log 1 4 log 1 4 log 1 4 log 1 4 log 1 4 log 1 4 log 1 4 4 4 4 2 4 4 128 64 32 16 8 4 2 28 2 2 7 6 5 4 3 2 4 2 log 2 ) 2 2 2 2 log (2 2 = 14 2 28 (A) 79(02-4-38) 1 log 6 log 3 2 log 6 1 6 1 6 1 (B) 80(02-5-23) ; 3 log 1 2 log ; 1 log log 2 2 8 4 b a b a 5,1 2 3 log log log 2; 3 log log 2 2 2 2 a b b a b a (A) 81(02-5-24) 1 27 1 3 1 3 3 3 3 log 3 3 3 3 log 27 27 1 1 (A) 82(02-6-20) 2; 1 3 1 1 3 1 27 1 9 1 3 1 4 ; 1 2 1 log16 4 1 128 4 1 128 4 1 log ,0 25 log 14 1 2 log 2 1 27 (C) 83(02-6-36) 3 6 3 7 8 3 6 2 6 7 3 2 log 7 6 log log 2 3 log 216 log 343 log 256 1 729 log log
11 3 51 3 16 3 log 6 log 7 3 6 log 3 log 2 8 6 7 3 2 (D) 84(02-8-12) 4; 7 log5 log5 7 b b 2 4 2 1 2 1 log5 7 7 log5 b b (A) 85(02-8-13) ; ; lg3 lg2 b a b a 2 1 lg3 2 lg2 1 9 lg lg20 20 log9 (A) 86(02-8-15) 3 3 5 3 3 5 23 log 5 log 3 2 log 2 8 3 5 3log 5 log 3 2 3 3 3 5 3 log2 5 (A) 87(02-9-34) 49 7 3 9 2 log3 7 2 log3 7 ; 5,0 6 3 1 6 50 1 49 6 1 1 log50 3 log50 3 (B) 88(02-9-58) a b a b a b a b a b a log log log 2 2 1 log 1 1 1 log log 1 1 log 1 1 b b a b a a a a a ; 3; ; log log 1 2 ; 2 1 log 1 1 b b b a a a 8,0 3 2 3 1 log 2 log 1 ) ( log ) log ( log 2 2 b b a b ab ab a a a a a b (E) 89(02-10-27) ; ; log 7 lg2 2 b a 10 log log 7 2 2 lg 10 log log 28 lg2 lg28 lg2 56 lg 2 2 2 2 ) (3 3 2 1 2 b a ab a ab a a a b a (A) 90(02-10-73) 3 6 3 3 6 6 6 3 6 3 6 6 6 27 1 log 4 1 log log 4 27 log 3 log 1 ,0 25 log 2log 2 27 log 27 3 log 108 1 108 log 108 1 log 108 log 3 6 6 3 3 6 6 (A) 91(02-11-31) 2 5 log 10 5 log 2 1 2 2 5 log 2 5 5 log 2 2 5; log 2 5 2 5 5 log 2 2 25 5 2 16 4 5 4 log2 5 log2 (C) 92(02-11-32) ; 2 6 log 1 3 log 2 2 a x 2 6 log 1 3 log 2 2 bo’lsin. a x 2 6 log 1 3 log 2 2 2 6 log 1 3 log 2 2 = 2 6 2 6 log 1 3 1 3 log 2 2 = 2; 1 1 log 2 2 log 2 2 a x x a 2 2; (E) 93(02-12-48) 13 ,0 1300 lg lg )5 (lg2 3 1300 lg ,013 lg 3lg5 3lg2 ,0 75 4 3 10000 lg 3lg10 (E) 94(03-1-20) ; 5,0 5,0 ; log 3 2 log 11 5 ;1 log 11 3 log 5 5 x shuning uchun 3 x eng katta son. (E) 95(03-2-20) log 2 6 log log 12 2 log log 2 1 2log 2 1 2 6 2 3 3 2 6 2 3 3 = 6 log log 6 12 log 6 log log 2 log 6 12 log 2 3 2 6 2 log 3 3 2 3 2 3 6 3 6 log log 2 log 2 1 6 log 6 log log 2 log 2 6 log 2 3 3 3 3 2 3 2 3 3 3
12 6 log log 2) 6 1( log 6 log log 2 log 6 6 log 2 3 3 3 2 3 3 3 3 1 6 log 6 log 2 3 2 3 (C) 96(03-2-25) 2 3 log 1 log 1 lg 1 p 4 log 100 log 2 log 5 log 10 (E) 97(03-3-33) log 32 log 5 5 log 8 5 32 log 8 log25 32 2 8 = 3 5 2 log 5 23 (C) 98(03-4-32) log8 ,0 36 log3 ,0 64 8 ln 3 y 0 ln1 ,0 36) ln( ,0 64 (C) 99(03-4-33) log 32 18 3log 4 2log 8 2 8 4 log 32 18 log 64 64 log 2 8 4 24 5 18 2 3 (B) 100(03-5-39) 5 5 5 5 5 5 5 log log y 4 log 5 log 5 log 4 5 4 5 5 5 (A) 101(03-6-59) ; 7,0 lg5 7 13 7 10 7,0 1 lg5 1 log5 10 (D) 102(03-9-19) 2 5 1 log 2 10 7 3 log 3 3 1 2 3 3 2 5 log 3 2 10 7 log 2 10 7 3 2 10 7 log 2 5 3 2 10 7 log 3 2 3 2 1 3 log 3 1 log 2 1 3 3 =-0,5 (D) 103(03-11-82) log2 3 log3 2 2 ; 3 y x bo’lsin. Har ikki tenglikni 2 asosga ko’ra logarifmlaymiz. log 2 log 3 log 3 log 2 3 3 2 log 2 2 x log 3 2 log 3 log 3 log 2 2 2 3 ; log 3 log 2 log 2 2 3 log 2 2 y bundan 0; ; ; log log 2 2 y x y y x x 0 2 3 log2 3 log3 2 ; 1 1 2 3 log2 3 log3 2 (D) 1.14.3. Logarifmik tenglamalar. 1(96-6-55) ; 0 16 3 16; 3 2 3 log log3 2 x x x 4 ; 0 16 2 x x x (C) 2(97-2-55) 24 19; 5 19; 4 5) log4( x x x 24-20=4 (C) 3(97-8-40) ; 0 25 4 25; 4 2 4 log log4 2 x x x 5 ; 0 25 2 x x x (A) 4(98-2-35) ; 0 1 4 0 1 8 1 8 1 4 ;1 8 2 3 3 1) 2 ( 3 4 log x x x x x x x x x 0 1 4 0 1 8 2 2; ; 0 ; 0 1 4 0 1 8 0 4) ( 3 3 2 1 3 2 x x x x x x x x x x x x 2 chet ildiz. Javob 0 va 2 (C) 5(98-6-30) .? ;1 6; 3 2 2 1 2 x x x x Tenglamaning har ikki tomonini 2 asosga ko’ra logarigmlaymiz. log 6 log 3 log 6; log 2 3 2 log 2 2 2 2 2 2 2 x x x x ; log 6; 0; log 6 3 log 2 2 1 2 2 2 x x x x log2 6; 2 x (A) 6(98-9-34) 3 ;) lg( 3) 2 lg( 2 x x x
13 ; 3 0 3 2 0 3 ; 0 3 0 3 2 3 3 2 2 2 2 2 x x x x x x x x x x x ; 3 0 3 2 3 ; 0 2 2 1 x x x x x har ikki ildiz chet ildiz. x (D) 7(99-2-32) 2 ; ; 2 4 2 1 2 4 log log4 x x 16 1 2; 2; log log 4 4 x x x ; 256 16 1 16 16 x (E) 8(99-6-26) 0; 1 log log log 2 2 18 x 2; 1 ;1 log 1 log log 2 2 2 x x 4 ; 1 4; 1 x x (D) 9(99-6-28) ; 3log ) log (54 2 3 2 x x ; log ) log (54 3 2 3 2 x x 0 54 27 ; 0 0 54 54 3 3 3 3 3 x x x x x x x bulardan x 3 (D) 10(99-6-50) 0; 5 log log 5 5 1 x 5 25; 5; 5 5 ;1 5 log5 x x x x (E) 11(99-8-31) ; 3 3; 3 1 3 1 4 2 log 5 1 4 log 5 x x 1 2 2 log 1 5 x ; ;1 2 log 1 5 x 2; log 5 x x 5 (D) 12(00-1-37) 0; log log log 2 4 8 x 4; ;1 log log log 2 2 2 x x x 16; (C) 13(00-2-24) 7; 4log 2log 3 log 25 5 5 x log 49; log 9 log 5 5 5 x log (9 49 ;) log 5 5 x 441 9 49 x (A) 14(00-3-28) 8 ; lg 4 lg 8 27 9 4 1 x x log 4; 3 2 3 2 8 1) 3( 2 x x 3; 2 3 2 3 3 2 x x 2 ;1 3 x x (C) 15(00-3-36) ) 0; log log log 3 4 3 2 x 3; ;1 log log log 3 4 3 4 3 x x 16 4; 43 ; 3 x x x (B) 16(00-3-38) lg ; 2 lg 1 2 lg 1 x x 0 0 2 1 x x bundan x 0 ; 2 ; 1 2 2 2 ; 1 lg 1 2 2 lg 1 x x x x 2 1 0; 1 0; 1 2 ;1 2 2 1 2 2 x x x x x x Javob: 2 1 (B) 17(00-3-39) 100; lg 1 x x x>0; tenglamaning har ikki tomonini 10 asosga ko’ra logarifmlaymiz. t x x x x x 2; lg )1 lg100; lg (lg lg lg 1 bo’lsin. ;1 2; 0; 2 2; )1 ( 2 1 2 t t t t t t 10; 1 ;1 100; lg 2; lg 1 x x x x 10 10 1 100 2 1 x x (A) 18(00-3-41) x x x x 2 3 3 8 ; 3 2 8 log 3 ; 0) ( 3 ; 3 9 8 3 t t x x x bo’lsin. 9 ; 8 t t 0; 1 9; 0; 9 8 2 1 2 t t t t 2 9; 3 x x (C)
14 19(00-8-6) ; 1 2 10 2 log3 2 3 log x x x x 2 ; 10 2 log 3 2 log 3 x x x x bundan x1 1 ; 2; 10 log log 2 3 2 3 x x t x x x 3 3 2 3 log ;0 8 2log log bo’lsin. 4; 2; 0; 8 2 2 1 2 t t t t 81; 1 4; 9; log 2; log 3 3 2 3 x x x x (A) 20(00-8-15) 1; 2log 3 7 9 log 1 2 1 2 x x 1 ; log 3 7 9 log 2 1 2 1 2 x x 1 ; 3 7 9 2 1 1 x x 6; 2 3 ;1 2 3 9 7 9 1 1 1 1 x x x x 3; 3 x1 2 ;1 1 x x (A) 21(00-8-40) 8 3 3 3 2 3 3 log log log log x x x x ; log log 36 3 8 3 2 3 x x x x x 0; 27 0; 27 ; 27 3 6 30 30 36 30 36 log3 x x x x x x 3 27 27; 0; 6 6 x x x (A) 22(00-10-82) 25; 2 ) ( 45)2 log2 ( x x x 5,0 0 1 ; 2 0 2 x x x x 5; 5,4 25; 5,4 ) ( 2 x x 0 5,9 ; 5,0 2 1 x x . Tenglama yechimga ega emas. (A) 23(96-10-38) t x x x 2 2 2 2 log ;0 6 5log log bo’lsin. 2; 3; 0; 6 5 2 1 2 t t t t 4; 2; 8; log 3; log 2 2 1 2 x x x x 32 4 8 2 1 x x (C) 24(96-1-35) t x x x lg ;0 2 lg lg2 bo’lsin. ;1 2; 0; 2 2 1 2 t t t t 10; 1 ;1 100; lg 2; lg 2 1 x x x x 10 10 1 100 2 1 x x (C) 25(96-9-86) t x x x 3 3 2 3 log ;0 3 4log log bo’lsin. ;1 3; 0; 3 4 2 1 2 t t t t 3; ;1 27; log 3; log 2 3 1 3 x x x x 81 27 3 2 1 x x (B) 26(98-3-33) t x x x 3 3 2 3 log ;0 2 3log log bo’lsin. ;1 2; 0; 2 3 2 1 2 t t t t 3; ;1 9; log 2; log 2 3 1 3 x x x x 12 3 9 2 1 x x (C) 27(98-6-24) t x x x 2 2 2 2 log ;0 1 4log log bo’lsin. 5; 2 5; 2 0; 1 4 2 1 2 t t t t ; 2 5; 2 log 5 2 1 2 x x ; 2 5; 2 log 5 2 2 2 x x x1 x2 16 2 2 2 4 5 2 2 5 (C) 28(98-10-80) t x x x 2 2 2 2 log ;0 3 4log log bo’lsin. ;1 3; 0; 3 4 2 1 2 t t t t 2; ;1 8; log 3; log 2 2 1 2 x x x x 10 8 2 2 1 x x (B) 29(98-12-105) ;) (3 13 )3 13| log ( | 2 x x x ; 0 13 0 13) 3( 3) 13)log ( ( )1 2 x x x x 13 ; 13 0 3) 3) 13)(log ( ( 1 2 x x x x 13 8 31 ; 13 3 3) ( log 2 2 x x x
15 ; 0 13 0 13) 3( )3 13)log ( ( ) 2 2 x x x x 11 ; 13 3 )3 ( log 2 2 x x x 24 13 11 2 1 x x (D) 30(99-3-20) lg30; 1 3 lg 2 5 lg x x 5 ; 5,1 5 0; 3 2 0 5 x x x x x ; ;1 lg30 3 5 2 lg x x lg3; )3 5)(2 ( lg x x 9 3) 5)(2 3 ; ( )3 5)(2 ( 2 2 x x x x ; 5 2 1 6; 0; 6 13 2 2 1 2 x x x x ; Javob: x=6 (B) 31(99-6-55) 4; 2 log 2 log 2 x x 0; ;1 x x 4; 2log 2log 2 2 x x 4; 4log 2 x ;1 log2 x x=2 (A) 32(99-8-32) ;1 )lg lg (lg10 ;1 )lg 10 lg( 2 2 x x x x ;1 2lg )lg (lg10 x x t x x x lg ;0 1 lg 2lg 2 ;1 2 ; 1 0; 1 2 2 1 2 t t t t 10. 1 ;1 10; lg 2 ; 1 lg 2 1 x x x x Kichik ildiz 0,1 (B) 33(00-1-47) ;0 3 2log log 2 2 2 2 x x . t x x x 2 2 2 2 log ;0 3 4log log bo’lsin. ;1 3; 0; 3 4 2 1 2 t t t t 2; ;1 8; log 3; log 2 2 1 2 x x x x 10 2 8 2 1 x x (D) 34(00-4-40) lg (100 ); 6 lg (10 ) lg 2 2 2 x x x lg ) ; (lg100 6 lg(10 )) lg(10 ))(lg (lg x 2 x x x x lg ) ; (2 6 lg ) lg10 (lg 10 lg x 2 x x x x ); lg 4lg (4 6 )1 (2lg 2 x x x ; lg 4lg 4 6 1 2lg 2 x x x t x x x lg ;0 3 2lg lg2 bo’lsin. 3; ;1 0; 3 2 2 1 2 t t t t ; 1000 1 3; 10; lg ;1 lg 2 1 x x x x ,0 01 1000 1 10 2 1 x x (D) 35(97-12-54) ;1 3) log ( 2) log ( 2 2 x x 2; 3; 2 0; 3 0 2 x x x x x 2; )3 2)( ;1 ( )3 2)( log2 ( x x x x 0; 4 ;1 0; 4 5 2 1 2 x x x x 9 )1 ( 8 8 x (B) 36(98-11-45) 2; log 2 2 log log 4 2 x x x (4 ) log 1 log (2 ) log 1 4 2 2 x x x ; ;) log (4 log (2 ) log 2 2 2 x x x ; log 2 ) log 1( log 2 2 2 x x x 2; ; log log 2 log log 2 2 2 2 2 2 x x x x ; 2 2; log 2 1 2 x x ; 2 2; log 2 2 2 x x ;1 2 2 2 2 2 2 x x (A) 37(99-3-21) ;1 12) log 2 log4 ( x x 0 ;1 x x ;1 log 12) 2 log ( 1 2 2 x x ;1 12) 2 log ( 1 x x ; 12 2; 12) log ( x2 x x x 0; 3 4; 0; 12 2 1 2 x x x x (A) 38(00-8-39) 36; log log log log 16 5 6 5 4 5 5 x x x
16 36; 16log 6log 4log 2log 5 5 5 5 x x x 5 2 ; 1 36; log 72log 5 5 x x x (A) 39(00-10-40) ) 3; log 3 3 log log 9 3 x x x (9 ) log 1 log (3 ) log 1 3 3 3 x x x ; ;) log (9 log (3 ) log 3 3 3 x x x ; log 2 ) log 1( log 3 3 3 x x x 2; ; log log 2 log log 2 3 3 2 3 3 x x x x ; 3 2 ; log 2 1 3 x x ; 3 2 ; log 2 2 3 x x ;1 3 3 2 2 2 2 x x (C) 40(97-1-59) 10; 25lg lg25 x x ; 25lg lg25 x x ;1 5; 2lg 5; 5 10; 25 25 2 2lg lg lg x x x x 10; 2 ; 1 lg x x (C) 41(97-6-59) 6; 9lg lg9 x x ; 9lg lg9 x x ;1 3; 2lg 3; 3 6; 9 9 2 2lg lg lg x x x x 10; 2 ; 1 lg x x (C) 42(97-7-35) ;1 )1 lg( x x tenglama ildizlarining sonini funksiya grafiklarini chizish orqali topamiz. ; 1 )1 lg( x y x y Funksiya grafiklari ikki nuqtada kesishgan. Tenglama ikki ildizga ega. (B) 43(97-10-35) 3; )1 ln( x x tenglama ildilaining sonini funksiya grafiklarini chizish orqali topamiz. ; 3 )1 ln( x y x y Funksiya grafiklari ikki nuqtada kesishgan. Tenglama ikki ildizga ega. (B) 44(00-2-22) 3 972 2 2; 3 ) ( log 972 2 3 3 y x y x y x y x ; 972; 2 972; 27 3 2 3 ; 3 972 2 3 3 y y y y y x y x 10 5 2 5; 2; 36; 6 xy x y y (C) 45(00-4-43) 0 ) 8 1 5)( 2 3 ln( 7) 12 lg(2 7 7 2 7 5 2 x x x x x x x x ; 1) 3 ; 2 ; 0 8 1 2 0 5) 3 ln( x x x x x 2) ; 0 4) 3)( ( 8 5,3 5,0 3 5 ; 0 12 0 8 0 7 2 0 1 2 0 5 3 2 x x x x x x x x x x x x 5,3 ;8 x a) 0; 6 5 ;1 7 5 7; 7 2 2 7 2 5 x x x x x x 5,3 ; 2 5,3 ; 3 2 1 x x
17 b) 5,3 4 5,3 ; 3 0; 12 2 1 2 x x x x d) 4 ;1 7 0; 2 7) lg(2 x x x ; Tenglama bitta ildizga ega. (B) 46(01-1-22) 2 ; 1 39) 3 lg( 5) 2 lg( 2 x x ; 0 39) 3 lg( 0 39 3 0 5 2 2 2 x x x 39 ;) lg(3 5) 2lg(2 2 x x 39 ;) lg(3 5) lg(2 2 2 x x 39; 3 25 20 39; 4 3 5) (2 2 2 2 2 x x x x x 4; 16; 0; 64 20 2 1 2 x x x x (D) 47(01-1-23) ;1 3 log 1 log x x x 3 ;1 log 3 ;1 3 log 1 ;1 3 log 1 2 x x x x (B) 48(01-2-66) 3 ; 2cos5 3) (2 log4 x 2; 3 4; 3 ;1 2 3) log4 (2 x x x 1 4; 3 x x (A) 49(01-2-73) ; 10 5 lg 3 5 lg x x x tenglamaning har ikki tomonini 10 asosga ko’ra logarifmlaymiz. lg ; 5 lg 3 5 lg ; lg10 lg 5 lg 3 5 lg x x x x x x 3lg ; 15 5lg lg2 x x x t x x x lg ;0 15 2lg lg2 bo’lsin. 5; 3; 0; 15 2 2 1 2 t t t t ; 10 1 5; 10 ; lg 3; lg 5 2 3 1 x x x x ,0 01 100 1 10 1 10 5 3 2 1 x x (E) 50(01-3-26) 10; 1 1 ; 3 1 lg 3 3 4 2 3 4 2 x x x x x x 4; 3 4 2; 3 4 3 ; 3 2 2 2 3 4 2 x x x x x x x x x ; 3 0 3 4 2 x x x x 6; 2; 0; 12 8 12; 4 4 2 1 2 2 x x x x x x x 8; 6 2 2 1 x x (C) 51(01-5-10) ;1 lglg2 10 lg 4 lg x x 4; 0 0 ; 4 ; 0 0 4 x x x x x ; 10 2 lg 10 4 ; 10 lg lg2 10 4 lg 2 x x x x 0; lg2 4 lg2; 4 2 2 x x x x ; 2 4lg2 16 4 2 ,1 x Bu ildizlar (0;1) oraliqqa tegishli bo’lgani uchun. Berilgan tenglama ikki ildizga ega. (A) 52(01-5-11) 4 ; 3 log log log 4 2 x x x a a a 4 3 4 log 4 ; 3 3 4 log 1 2 log 1 log x x x x a a a a a x a x ;1 log (A) 53(01-5-12) 0; ;1 3; log ( 2 1) x x x x x 0; 2 2; 4; 3; 1 2 1 2 2 x x x x (A) 54(01-7-25) 0; )) 2lg(1 lg(3 x ;1 )1 2; lg( )1 ;1 2lg( ) 2lg(1 3 x x x 9,0 10; 1 1 x x (D) 55(01-7-26) 2; |1 ;1 | |1 log2 | x x ;1 ;2 1 3; 2; 1 2 1 x x x x (E) 56(01-8-33) ; 2,0 lg lg ,0 2 x x Istalgan musbat son tengsizlikning yechimi bo’ladi, shuning uchun 5 ga karrali eng kichik ildiz x=5.
18 11 6 6 6 log611 6 lg 11 lg lg6 6 5) 1 lg( (C) 57(01-9-1) 4; ) log (9 log 2 3 2 x x x 4; ) log log 9 (log 2 3 2 x x x x 2; log 1 log 1 2; )1 log 3 (log 2 3 3 2 3 x x x x log3 x t bo’lsin. 2; 2; 1 1 2 2 t t t t 2; ;1 0; 2 1 1 2 t t t t 3; ;1 log 1 3 x x 9 1 2; log 2 3 x x 9 ; 31 9 1 3 2 1 x x (A) 58(01-9-9) 9; 3 log3 x x tenglamaning har ikki tomonini 3 asosga ko’ra logarifmlaymiz. 2; )log log log 9; (3 log 3 3 3 log3 3 3 x x x x ; log3 x t bo’lsin. 0; 2 3 2; 2; 3 ) (3 2 2 t t t t t t 2; ;1 2 1 t t 9; 2; 3; log ;1 log 2 3 1 3 x x x x 3 3 9 3 (A) 59(01-9-22) 1 ;0 1 0; )1 3lg( ) 169 lg( 3 x x x x 0; )1 ( 0; lg169 )1 lg( ) 169 lg( 3 3 3 3 x x x x ;1 3 3 169 ;1 )1 ( 169 2 3 3 3 3 x x x x x x 0; 56 0; 168 3 3 2 2 x x x x 7; ;1 8 2 1 x x (A) 60(01-9-36) ;)1 log (2 ;)1 log ( ;)1 log ( 3 3 3 x x x 1 0; 1 x x . Bu sonlar arifmetik progressiyaning ketma-ket hadlari bo’lsa quyidagi tenglik bajariladi. ;)1 log (2 )1 log ( )1 2log ( 3 3 3 x x x )1 ; 1)(2 log ( )1 log ( 3 2 3 x x x ;1 2 2 1 2 ;)1 1)(2 ( )1 ( 2 2 2 x x x x x x x x 5 ;1 0 0; 5) ( 0; 5 2 1 2 x x x x x x (E) 61(01-9-41) 5 ) lg(2 2) lg(5 x x ; x x x x x ; 5 2 5 2 0; 5 2 0 2 5 (B) 62(01-9-44) 0; 13) 8 log ( 13) 5 ( log 2 2 7 1 2 2 7 x x x x Bu tenglik bajarilishi uchun har bir qo’shiluvchi 0 ga teng bo’lishi kerak. ; 1 13 8 1 13 5 0 ; 13) 8 ( log 0 13) 5 ( log 2 2 2 2 7 1 2 2 7 x x x x x x x x 2 ; ;6 7 ; 2 2 1 2 1 x x x x x=2 (B) 63(01-10-29) ; 10 2 2 lg x x x tenglamaning har ikki tomonini 10 asosga ko’ra logarifmlaymiz. ;2 lg 2 2 lg ; 10 2lg lg 2 lg ; 10 lg lg 2 2 2 lg x x x x x x x x 0; 2 0; lg 2) 0; (lg 4 4lg lg 2 2 x x x x 100; 2; lg x x (B) 64(01-10-32) 515; log 2 3 3 2 x x x=3 berilgan tenglamaning ildizi. Endi tenglamaning boshqa ildizi yo’qligini ko’rsatamiz. 3 3 2 log 515 ; 2 x y y x ; birinchi funksiya o’suvchi ikkinchi funksiya esa kamayuvchi. Shu sababdan tenglama x=3, yagona ildizga ega. (B) 65(01-11-29) 0; 2 0; 3 ;1 4; 2) log (3 2 2 x x x x x ; 0; 2 3 ; 2 3 2 2 4 4 2 t x x x x x
19 ;1 2; 0; 2 3 2 1 2 t t t t 2 0; 2 2; ;1 ;1 2 2 x x x x x ; tenglama yagona ildizga ega. (D) 66(01-11-33) ; 26 3 3 log 2 3 x x x 26; 0; 3 26 3 32 x x x 0; 27) 0; 3 (3 27 3 3 ; 3 26 3 3 2 2 x x x x x x x 3 27; 0; 3 3 x x x (D) 67(02-10-60) 5,0 log 2 2,0 ; 5,0 32 1 log 2,0 5 x x ; 4; 2; 2 ; 1 5,0 ; log 2 2 log 2 1 x x x x (D) 68(02-2-24) 0; 6 ; log 2 log 3 3 3 x x x x x 0; 2 6 log log 3 3 3 x x x x 0; 2) 1)(log 0; (3 )1 2(3 )1 (3 log 3 3 x x x x x 3; 1 0; 1 )1 3 x x 9 2; 2) log 3 x x (A) 69(02-3-35) 0 ; 1 4 3 ;1 2 )1 log3 (4 3 x x x ; 3 0; 1 4 3 3 3 ; 3 1 3 4 2 2 1 t x x x x x 3; 1 ;1 0; 1 4 3 2 1 2 t t t t ;1 ; 3 0; 3 ;1 3 1 x x x x 1 0 1 2 1 x x (A) 70(02-3-36) 0; 4 ; 1 ;1 ;1 4 log 2 log 4 x x x x x ; log ;1 log 2 2 log 1 ;1 4 log 1 log 1 2 2 2 4 2 t x x x x x 0; 2 ; 2 2 2 ;1 2 2 1 2 2 t t t t t t t t ; 2 1 ;1 4; log 2; ;1 log 2; 2 2 1 2 2 1 x x x x t t 2 2 1 4 2 1 x x (A) 71(02-3-31) 6 ; lg 3 2 lg3 1 1 x x 0 6; 3 3 3 6 ; lg 3 lg3 2 1 1 2 1 1 2 1 t x x x x x bo’lsin. ;0 2 3; 0; 6 6; 2 1 2 2 t t t t t t 2 1 ;1 2 1 3; 3 2 1 x x x (A) 72(02-5-25) lg25; 2 7) lg(2 5,0 11) lg( x x 25 ; lg100 7 2 lg 11) lg( x x 7 ; 4 2 1 ; 4 7 2 11 4; lg 7 2 11 lg x x x x x x 7 ;) 11 16(2 22 ; 7 4 2 11) ( 2 2 2 x x x x x 0; 9 10 112; 32 121 22 2 2 x x x x x 10 2 1 x x (D) 73(02-5-27) 3 ) ( log 2 1 2 log 1 ; 3 ) ( log 2 1 log 3 2 3 3 2 9 xy y x xy y x ; ; 6 2log log 2 1 2 log 1 2log ; 3 log log 1 log log 3 3 3 3 3 3 3 2 3 y x y x y x y x tenglamalarni ayiramiz. 3; 9; 2; 5; log 2 log 5 3 3 x y y y 12 3 9 x y (C) 74(02-6-34) ; 10 2 2lg x x x tenglamaning ha ikki tomonini 10 asosga ko’ra logarifmlaymiz. 2lg ; 1 lg ; 2lg lg10 lg 2 2lg x x x x x x t x x x 0; lg 1 2lg 2lg 2 bo’lsin. ; 2 2 1 ; 2 2 1 0; 1 2 2 2 1 2 t t t t ; 10 ; 2 2 1 ; lg 10 ; 2 2 1 lg 2 2 1 2 2 2 1 1 x x x x 10 10 10 2 2 1 2 2 1 2 1 x x (B)
20 75(02-6-35) 84; log 3 3 2 2 x x x=2 berilgan tenglamaning ildizi. Endi tenglamaning boshqa ildizi yo’qligini ko’rsatamiz. 3 2 2 log 84 ; 3 x y y x ; birinchi funksiya o’suvchi ikkinchi funksiya esa kamayuvchi. Shu sababdan tenglama x=3, yagona ildizga ega. (B) 76(02-7-6) 45; 3 3 2 log 73 log 7 x x ; 3 3 log7 log7 x x 9; 45; 3 5 3 log 7 log 7 x x 49; 2; log7 x x (A) 77(02-8-16) 3; ) 1( log ) log (3 5,0 2 x x 3 1; 3 0 ; 1 0 3 x x x x x ; ;3 ) )(1 3( ;3 log ) log 1( ) 3( log 2 2 2 x x x x 1 ;3 5 0; 5 4 ;8 3 3 2 1 2 2 x x x x x x x ; 6 )1 ( 5 ni qo’shsak. (A) 78(02-10-69) 2log 12; 16 ) log (2 4 2 2 x x 0 12; 4 16 log 12; 4 16 ) log (2 2 2 2 t x x x x x ; 3; 0; 4 0; 12 12; 2 1 2 2 t t t t t t log 3 3; 4 4 x x (A) 79(02-10-71) ; 72 3 2 2 ; 72 3 2 1 ) ( log 1 1 2 y x y x y x y x 72; 3 3 72; 4 2 3 2 ; 72 3 2 2 1 2 1 y y y y y x y x 3 3 1 3; ;1 6; 6 xy x y y (A) 80(02-11-33) 3; log (4 ) 2 log 2 2 2 x x 3; ) log (lg 4 log 2 log 2 2 2 2 2 x x 3; ) log (2 1 log 2 2 2 x x 3; log 2 1 2log log 2 2 2 2 x x x t x x x 2 2 2 2 0; log 4 3log log bo’lsin. ;1 4; 0; 4 3 2 1 2 t t t t 2 ; 1 ;1 16; log 4; log 1 2 1 2 x x x x 8 2 1 16 2 1 x x (D) 81(02-11-34) 6; log log log 3 1 3 x x x x 6; log 2log log 3 3 x x x x 4; 2log 3 x 9 2; log3 x x ; 18 4 9 9 4 2 2 x x (D) 82(02-12-49) ; 26 3 3 log 2 3 x x x 26; 0; 3 26 3 32 x x x 0; 27) 0; 3 (3 27 3 3 ; 3 26 3 3 2 2 x x x x x x x 3 27; 0; 3 3 x x x (D) 83(02-12-50) 0; ; lg96 ) lg( 2 lg 2 ) lg( 2 2 x xy y x ; 96 2 100 ; lg96 ) 2 lg( 100 2 2 2 2 xy y x xy y x 14 196; ) ( 2 y x y x (B) 84(03-1-11) 5 ; 4 ;1 0; 2; 4) log (5 x x x x x ;1 4; 0; 4 5 ; 4 5 2 1 2 2 x x x x x x (B) 85(03-9-20) 2; 19) 19 (5 log 2 5 2 x x x ; 0 2 5,2 ; 0 19 19 5 1 2 5 0 2 5 2 D x x x x x x 2 ) ; (5 19 19 5 2 2 x x x 0; 6 ; 4 20 25 19 19 5 2 2 2 x x x x x x 2; 3; 1 x x tenglama 1 ta ildizga ega, demak m=1. 3 4 3 2 2 1 2 2 0 x m (C) 86(03-11-78) 0; )log (2 2 x k x 1 0; log2 x x ; k qanday qiymat qabul qilishidan qat’iy nazar x=1 tenglamaning ildizi bo’ladi.
21 x=1 bo’lsa k=2 boladi. Tenglama boshqa ildizga ega bo’lmasligi uchun x2 0 bo’lishi kerak. 0; 0; 2 0; 2 2 k k x k x Javob: 2 0; k k (E) 87(03-5-28) Izlanayotgan sonlar 2 1 1 1 ; ; b b q b q bo’lsin shartga asosan 1 0; 1 q b . ; 9 ) log ( ) log ( log 42 2 1 2 1 2 1 2 2 1 1 1 b q b q b b q b q b ; 2 ( 42 ) 1( ; 9 ) ( log 42 9 3 3 1 2 1 3 3 1 2 2 1 1 1 q b q q b q b b q b q b 8 ; 42 ) 1( ; 8 42 ) 1( 1 2 1 1 2 1 q b q q b q b q q b 21 ; 4 4 4 4 ; 21 1 2 2 q q q q q q 4 ;1 4 1 0; 4 17 4 2 1 2 q q q q (A) 88(03-7-21) ;2 2) (2 log 6) (4 log 5 5 x x 2 2 6 4 ; 0 2 2 0 6 4 x x x x t x x x x x ;5 2 2 2 6 4 ;2 2 2 6 4 log 5 bo’lsin. 0; 4 5 10; 5 6 5; 2 6 2 2 2 t t t t t t ;1 2; 2 4; ;1 2 4; 1 1 x x x t t (C) 89(03-2-4) ;) lg(10 lg 3; lg lg 2 2 4 3 2 2 4 b a a b b a a b 10; 10 ; ; 10 ; 10 3 3 3 4 2 4 3 2 a a a a b a a b 100 ; 10 2 4 b b ; 10 100 110 a b (D) 90(03-4-34) ;| 3log | 3 ) 3 ( ) (2 log 4 3 2 4 x x x 0 2) 2; ( 2 x x bo’lgani uchun 0 ) (3 x 3 bo’lishi kerak, demak 3-x>0, x<3 ; |3-x|=3-x; ; ) log (3 ) 3 ( ) (2 log 3 4 3 2 4 x x x ) ; 3 ( 1 ) 3 ( ) 2 ( 3 3 2 x x x 3 ;1 ;1 ) (2 2 1 2 x x x chet ildiz. 26 1 27 27 x (C) 91(03-8-47) 0; 4 lg5; 2 4) lg(2 x x x x x x ; 10 10 lg5 4) lg(2 x x x x ; 10 10 4 2 lg5 x x x x ; 5 10 4 2 x x x x 4 2 ; 4 2 x x x x (A) 92(03-11-13) ; 2 7 3log2 7 2 9 2 5 2 x x 2 ; 3 2 9 5 ; 2 2 7 2 2 3 log2 7 2 9 2 5 2 x x x x 5,1 ;4 ;0 12 5 ;3 2 9 5 2 2 1 2 2 x x x x x x (E) 93(03-7-38) 0; 2 log 9 log 2 3 x x 0 ; log ;1 2 0; 3 x x x 0; 2 log 2 log 1 2 2 3 3 x x log3 x t bo’lsin. 0; 2 2 0 ; 2 2 2 2 1 2 2 t t t t 0) 2 (; ; 2 2 0; 2 2 t t t t t t t ; ;1 0; 2 0; 2 2 1 2 t t t t 3 1 ;1 log3 x x (A) 94(03-4-36) lg1000; lg 3 ; log 1000 3 lg lg y x x x x y y y 3; 3; 3lg lg 3; lg lg lg 2 3 3 y y y y x x y 10; 1 10; ;1 3; lg lg 2 1 2 y y y y (С) 95(03-12-76) 162; 3 log3 2 log3 x x x x 0;
22 162; 162; 3 log3 log3 log3 3 log log3 x x x x x x x x log 81; 81; log 161; 2 3 3 log 3 log3 log3 x x x x x x 2; 4; log 4; log log log 3 2 3 3 3 x x x x 1 9 9 1 9 ; 1 9; 2 1 2 1 x x x x (С) 96(03-3-34) ;1 5 log 25 log 2 2 ,0 2 ,0 2 x x ;1 log 5 25 log 2 5 2 5 x x 1 log 5) (log log 25) (log 2 5 5 2 5 5 x x t x x x 5 2 5 2 5 ;1 log )1 (log 2) (log bo’lsin. ;1 1 2 4 4 ;1 )1 ( 2) ( 2 2 2 2 t t t t t t 2; ;1 0; 2 3 0; 4 6 2 2 1 2 2 t t t t t t 25; 2; 5; log ;1 log 2 5 1 5 x x x x 125 25 5 2 1 x x (B) 97(03-9-21) 0; ; 4 1 ;1 ;1 4 log 1 4 log 2 4 x x x x x x ;1 log 4 log 4 log 2 4 4 4 x x x ;1 log log 1 log 1 2 4 4 4 x x x log4 x t bo’lsin. 0; ) 1( 1 1 ;1 1 1 2 2 t t t t t t 0; 1 1 1 ) 0; 1( ) )(1 1( 1 1 t t t t t t t ;1 0; 1 1 t t 0; 1 ) 1( 1 0; 1 1 1 0; 1 1 1 2 t t t t t t 2; 0; 0; 2 0; 1 2 3 2 2 2 t t t t t t t ; 16 1 2; log ;1 0; 4; log ;1 log 4 4 4 x x x x x x 16 81 16 1 1 4 3 2 1 x x x (С) 1.14.4. Logarifmik tengsizliklar. 1(96-3-87) 2 ; 4 log log 2 3 2 x x y ; 1 2 4 0 2 4 ; 0 2 4 log 0 2 4 2 2 2 3 2 x x x x x x x x 0 3 4 ;1 2 4 ; 1 2 4 0 2 4 2 2 2 2 x x x x x x x x ; 3;1 0; )1 3)( ( x x x (B) 2(96-7-33) 0; 8 4 1 4 log 2 1 x x 0; 1 8 4 1 4 ;1 8 4 1 4 ; 0 8 4 1 4 1 8 4 1 4 x x x x x x x x 2; 0; 8 0; 4 8 4 9 0; 8 4 8 4 1 4 x x x x x x x ;2 (E) 3(97-1-24) 4; 5) ( 2log 5 log 3 3 1 x x 4; 5) 4log ( 5) 2log ( 3 3 x x 5 ; 14 0 ; 5 9 5 2; 5) log3 ( x x x x x ;514 x (B) 4(97-1-56) ;1 2 ) log5 (5 x ; 5,2 0 5; 2 0 2 0; 2 5 5 2 5 x x x x x x 5,2 x ;0 (D) 5(97-3-33) 0; 5,1 3 3 log 3 x x 0; 1 5,1 3 3 ;1 5,1 3 3 ; 0 5,1 3 3 1 5,1 3 3 x x x x x x x x 5,0 ; 0; 5,1 0; 3 5,1 3 5,1 0; 5,1 3 5,1 3 3 x x x x x x 5,0 ; x (A) 6(97-4-16) lg ; 2 x y y 0;
23 100 2; 2; lg lg 0; lg 2 x x x (A) 7(97-6-24) 3 ; 4 2 ) log (3 2 ) (3 log 8 1 2 x x 3 ; 4 2 ) 3 log (3 1 2 ) (3 log 2 2 x x 1 2 ) log (3 3 ; 4 2 ) 3 log (3 4 2 2 x x 5,0 ;1 2 2; 2 3 x x x ; 5,0; x (A) 8(7-7-33) 0; 1 5 5 log 5 2 x x 0; 1 1 5 5 ;1 1 5 5 ; 0 1 5 5 1 1 5 5 x x x x x x x x ; 2,0 0; 1 0; 5 1 5 1 0; 1 5 1 5 5 x x x x x x 2,0 ; x (B) 10(97-11-24) 2; 3 2) log ( 2 log 9 3 1 x x 2 ; 3 2) 2 log ( 1 2) log ( 3 3 x x ;1 2) 2 ; log ( 3 2) 2 log ( 3 3 3 x x ; 2 1 0 ; 2 3 2 x x x x 1;2 x (D) 11(97-12-53) 0; 2 1 4) ( 5,0 log x x ;4 0; 0; 4) ( x x x . Eng kichik musbat yechim 5 (C) 12(98-2-37) ;)1 (6 log )1 2 ( log 2 2 ,0 2 4 ,0 2 x x x 0; 4) ( 0; 4 ;1 6 1 2 2 2 2 4 2 2 4 x x x x x x x ;2 0 0;2 0; 2) 2)( 2 ( x x x x . Manfiy yechimlar. ;2 0 (B) 13(98-3-32) 0; log 12 ) log (3 5 5 x ; 3 9 0 ; 3 12 3 log 12; ) log (3 5 5 x x x x x 3 9 x . 11 ta butun son tengsizlikni qanoatlantiradi. (D) 14(98-4-30) ;1 5,1 5 2 9 4 log3 x x ; 0 5 2 5,7 3 9 4 0 5 2 5,7 3 9 4 ; 0 5,1 5 2 9 4 3 5,1 5 2 9 4 x x x x x x x x x x 0 ; 5,2 ( 7 5,1 0 5,2 ) 16 5, )( ( ; 0 5 2 5,1 7 0 5 2 5, 16 x x x x x x x x 14;16 5, 3 x . 16 ta butun son tengsizlikni qanoatlantiradi. (A) 15(98-9-35) 20 ;) ( log 4) (2 log 2 3,0 2 3,0 x x 0; 4) 4)( 0; ( 16 20; 4 2 2 2 2 x x x x x 4;4 x . 0 2 4 4 (E). 16(98-10-79) 0; log 7 ) log (4 2 2 x ; 4 3 0; 4 7 4 ;7 log ) (4 log 2 2 x x x x x 4 3 x . 6 ta butun son tengsizlikni qanoatlantiradi. (A) 17(98-2-33) 2; 28 27 9 log 2 4 3 2 5 x x x ;1 5 0; 3 5 3 2 2 x x 5) ; (3 28 27 9 2 2 2 4 x x x 25; 30 9 28 27 9 2 4 2 4 x x x x 0; )1 1)( 0; ( 1 0; 3 3 2 2 x x x x 1;1 x . Butun yechim 0 (E) 18(99-3-17) 0; log log log 5 3 1 2 x
24 3 5 5 5 3 1 5 3 1 5 5 5 1 0 ; 3 1 log 1 log 1 0 ; 1 log log 0 log log 0 log 0 x x x x x x x x x x x x ; x ;1 3 5 (E) 19(99-6-9) 3; )1 log2 (2 x 5 ,4;5,0 ; 5,0 5,4 0; 1 2 8 1 2 x x x x x . Eng katta butun yechim 4 (D) 20(00-3-40) ;) log (5 )1 log ( 4 4 x x ;1 2 ; 5 1 2 ; 0 5 0 1 5 1 x x x x x x x x (E) 21(00-4-41) ;1 2) log 2 ( x x 1) ; 2 0 )1 2)( ( 0 )1 1)( ( ; 2 0 2 0 1 ; 0 2 2 1 2 2 2 2 x x x x x x x x x x x x x 2; 2; 1 x 2) ; 0 2 0 )1 2)( ( 0 )1 1)( ( ; 0 2 0 2 0 1 ; 0 0 2 2 1 2 2 2 2 x x x x x x x x x x x x x x x x 0 1; ;1 0 x . Har ikkovidan ;2 1;0 0;1 ;2 1 x (C) 22(00-4-42) ,2 4375 .2 25 2 ,2 25 3 2 ,2 25; 3 2 2 x x x ; ,0 8125 2 .2 25 ,2 25 2 2 2 x x , )2 log ( 2 ) log (3 2 2 x x x x c c tengsizlik x=2,25 da to’g’ri bo’lishi uchun 0<c<1 bo’lishi kerak, chunki 2,4375>0,871. ; 2 2 3 0 2 0 2 3 2 2 2 2 x x x x x x x x ; 0 5 3 2 0 2 0 3 2 2 2 2 x x x x x x 5,2 ;2 ; 0 )1 5,2 )( ( 0 )1 2)( ( 0 )1 3)( ( x x x x x x x (C) 23(00-7-34) 6; )3 ( 2 2 3) log2( x x ; 3 0 )5 ( ; 3 0 5 ; 0 3 6 9 6 3 2 2 x x x x x x x x x x 5;3 x . Tengsizlikning eng kichik yechimi 4 va u 15 da 11 ta kam. (C) 24(00-9-22) 13) ; log ( 17) ( log 8 5 1 8 5 1 x x 13 ;| 17 | 8log | log | 8 5 1 5 1 x x 13 ;| 17 | log | | log 5 1 5 1 x x ; 13 17 0 13) ( 17) ( ; 0 13 0 17 13| 17 | | | 2 2 x x x x x x x x 13 17 15 ; 13 17 0 30) (2 4 x x x x x x ; 13; 15; 13 x (B) 25(96-9-29) 2 ; 4 log log 2 5,0 2 x x y ; 1 2 4 0 2 4 ; 0 2 4 log 0 2 4 2 2 2 5,0 2 x x x x x x x x ; 0 3 4 0 2 4 ; 1 2 4 0 2 4 2 2 2 2 x x x x x x x x ; 0 )3 1)( ( 0 2) (2 2) 2 ( x x x x 2 ;3 2 2 1; 2 x (A) 26(96-12-87) ) ; 4 4 log log 2 5,0 2 x x y ; 1 4 4 0 4 4 ; 0 4 4 log 0 4 4 2 2 2 5,0 2 x x x x x x x x
25 ; 0 1 4 4 0 4 4 ; 1 4 4 0 4 4 2 2 2 2 x x x x x x x x 2 1; 1 2 ;0 1 ; 0 )1 2 ( 0 )1 2 x x x x (E) 27(96-13-28) ) ; 4 4 log log 2 3 2 x x y ; 1 4 4 0 4 4 ; 0 4 4 log 0 4 4 2 2 2 3 2 x x x x x x x x ; 0 1 4 4 0 4 4 ; 1 4 4 0 4 4 2 2 2 2 x x x x x x x x x x x x ; 0 )1 2 ( 0 )1 2 (B) 28(98-2-34) ; 1 5 1 0 6 ; log 8 log log 10 15 log 5 5 p p p p p p 5 1; 1 ; 5 1 1 0 p p p (D) 29(98-6-25) 0; 5) log ( log 2 4 ,0 2 x 0; 9 ; 0 5 4 5 ; 0 5 1 5) log ( 2 2 2 2 2 4 x x x x x ;3 ; 3 0; )3 3)( ( x x x (B) 30(98-11-39) 1 log 12; 0 log 6 x x x (B) 31(99-10-38) 32; 4 2 log2 x x 32; 2 2 2 log2 x x ; 0 0 4) 4)( ( ; 0 0 16 ; 0 32 2 2 2 x x x x x x x x 4;0 x . Butun yechimlar 1, 2, 3, bularning yigindisi 6 (E) 32(96-3-88) ; 2) ( 2) ( 9) log 2(2 )1 log 2( 2 x x x x 1) ; )9 log 2( )1 ( log 1 2 2 2 2 x x x ; 0 9 2 9 2 1 1 2 x x x x ; 5,4 0 2) 4)( ( 1 ; 9 2 0 8 2 1 2 x x x x x x x x x 4;1 2) ; )9 log 2( )1 ( log 1 2 0 2 2 2 x x x ; 0 9 2 9 2 1 1 2 2 x x x x ; 5,4 0 2) 4)( ( 1 2 ; 9 2 0 8 2 1 2 2 x x x x x x x x bu tengsizliklar sistemasi yechimga ega emas. Javob: x 4;1 (D) 33(96-9-30) ; )1 ( 3,0 log 4) ( 2 5 3,0 log x x x x x x 1 0 bo’lgani uchun x>1 bo’ladi. ; )1 ( log )4 5 ( log 1 3,0 2 3,0 x x x x ; 0 4 5 1 4 5 1 2 2 x x x x x x ; 0 4 5 0 5 6 1 2 2 x x x x x ; 0 )1 4)( ( 0 )1 5)( ( 1 x x x x x ;5 x (C) 34(96-12-88) ; 2) ( 2) ( 3) ( 2 log 1 5) 2 5 ( 2 log 1 x x x x x x 3 0 bo’lgani uchun x-2>1 bo’lad. 1) ;)3 log ( )5 5 ( log 0 3 2 1 2 2 1 x x x x ; 0 5 5 3 5 5 3 2 2 x x x x x x ; 0 8 6 3 2 x x x 0; 2) 4)( ( 3 x x x ;4 x (D)
26 35(96-13-29) ; 2) ( 2) ( 3) log 2 ( 5) log 2 ( 2 5 x x x x x x 3 0 bo’lgani uchun x-2>1 bo’ladi. 1) ; )3 log ( )5 5 ( log 0 3 2 2 2 x x x x ; 0 5 5 3 5 5 3 2 2 x x x x x x ; 0 5 5 0 8 6 3 2 2 x x x x x 0 2 5 5 2 5 5 0 )2 4)( ( 3 x x x x x ;4 2 5 5 x (C) 36(98-11-49) 32 4 log 2 x x tengsizlikning har ikki tomonini 2 asosga ko’ra lgarifmlaymiz. 5; 4) (log log 32 ; log log 2 2 2 4 2 log 2 x x x x log2 x t bo’lsin. 0; 5) 1)( 0; ( 5 4 5; 4) ( 2 t t t t t t ;1 5 t 2; 2 ;1 log 5 5 2 x x 2 5 ;2 x (E) 37(98-4-39) 0 3) ( log 6 3 1 x x ; 1) x=6 tengsizlikning yechimi. 2) 4 3 6 ; 1 3 3 6 ; 0 3) ( log 0 3 0 6 3 1 x x x x x x x x x ; 4;3 x . Yagona natural yechim 6. (B) 38(98-4-27) 0; 1 log 1 13 7 3 2 2 2 1 2 2 x x x x x x 0 13 7 3 2 x x chunki D<0. Tengsizlikning har ikki tomonini 13 7 3 2 x x bo’lib 0 1 log 1 2 2 2 1 2 x x x x ni hosil qilamiz. 1) ; 0 1 0 1 2 x x bundan x 1 ; 2) x 1 bo’lsa 0 1 2 x bo’ladi. Tengsizlikning 2 1 x har ikki tomonini bo’lib 0 1 log 2 2 1 2 x x x ni hosil qilamiz. Bu tengsizlik yechimga ega emas chunki 1 1 0 2, 1 2 2 2 x x x . Shunday qilib yagona musbat yechim x 1 (D) 39(01-1-24) t x x x 2 2 2 1; log log 2 log bo’lsin. ; 0 1 )1 2)( ; ( 0 1 2 ; 0 1 2 ; 1 2 2 t t t t t t t t t t 2; 1 ;1 ; 1 0 )1 1)( 2)( ( t t t t t t 1) 2 ;0 1 ; 0 2 1 ; .0 1 log2 x x x x x 2) 4;2 ; 0 4 2 ; 0 2 log 1 2 x x x x x Javob: ;2 4 2 ;0 1 x (E) 40(01-1-25) 0; 3 log | | log 3 3 x x 1) 1 ; 1 0 3 ; 0 log 0 3 log log 3 3 3 x x x x x 2) ; 0 1 3 log 2 ; 0 0 log 0 3 log log 3 3 3 3 x x x x x x x
27 ; 0 1 3 3 1 ; 0 1 2 3 log3 x x x x x x 1 ; 3 3 1 x Har ikkovidan ; 3 3 1 x (E) 41(01-2-28) ;1 2 ) log 2 (3 x x 1) ; 5,1 0 )1 3)( ( 0 )1 1)( ( ; 3 2 0 3 2 0 1 ; 0 2 3 2 3 1 2 2 2 2 x x x x x x x x x x x x x 1 ; x 3 2) ; 0 5,1 0 )1 3)( ( 0 )1 1)( ( ; 0 3 2 0 3 2 0 1 ; 0 0 2 3 2 3 1 2 2 2 2 x x x x x x x x x x x x x x x x Bu tengsizliklar sistemasi yechimga ega emas. x=-2 yagona butun yechim 1 ta . (D) 42(01-2-75) ; 2 1 3 1 1 0 ;1 3 1 log log 7 3 log 2 1 x x x x x 6; 1 5 ; 6 5 1 0 x x x (D) 43(01-2-80) 2 2 6 9 | 5 lg | 2 x x x y 5; 4; ;1 9 | 9 | 0 |; 2 )1 lg | 2 2 1 2 x x x x ; 5 ; 4 0 6 5 ; 9 | 0 | 2 lg 0 6 5 2 2 2 x x x x x x x 5 ; 4 3 ; 2 5 ; 4 0 2) 3)( ( x x x x x x x ; 2,3,4 va 5 butun yechimlar. Bu sonlarning yig’indisi 14 (E) 44(01-3-24) 0; 7 log6 3 x ;1 7 3 x 18 ; 6 3 x x . Eng kichik butun yechim -17 (D) 45(01-4-28) 2; 2 5 log 3 1 x 5,2 ;2 2 ; 5,2 9; 2 5 0 2 5 x x x x x (B) 46(01-6-38) 7; 128) (2 log 2 1 x ; 2 2 2 2 ; 0 2 2 2 2 2 ; 0 128 2 2 1 128 2 7 8 7 7 7 7 x x x x x x ;7 8 7; 8 x x x . Yagona butun yechim 8 (D) 47(01-6-39) ; 0 25 0 4 ; 25 4 ; 2 log 2 log 2 2 2 2 2 5 2 2 x x x x x x 5;2 ;5 2 0 ; 5) 5)( ( 0 2) 2)( ( x x x x x . Bu oraliqda 8 ta butun son bor. (D) 48(01-7-27) 3; log 3 | 3; | log 2 2 x x 8 8 1 x . Bu oraliqdagi butun sonlar 2,3,5 va 7. Bu sonlarning yig’indisi 17 (C) 49(01-7-28) 0; 3) 2log (2 )1 ( log 9 1 3 1 x x 0; 3) log (2 )1 ( log 3 1 3 1 x x ; 5,1 0 1 3 2 1 ; 5,1 1 1 3 2 1 ; 0 3 2 0 1 0 3 2 1 log 3 1 x x x x x x x x x x x 5,1 ;2 ; 5,1 0 5,1 ) 2)( ( ; 5,1 0 5,1 2 x x x x x x x (A) 50(01-7-35) 4 ; 1 5,0 7) log3( 2 6 x x
28 ; 2 1 2 1 2 7) 3( 2 6 log x x 2; 7) 6 ( log 2 3 x x 0 ; )1 7)( ( 0 2) 8)( ( ; 0 7 6 9 7 6 2 2 x x x x x x x x x ;1 2 . Eng katta butun yechim 2 (B) 51(01-9-3) 0; 1,0 log 2 ) log (3 2 2 2 x 0 1,0 log2 bo’lgani uchun 0 2 ) log2 (3 x bo’lishi kerak. 1; ;1 ;1 2 3 x x x (A) 52(01-9-45) 0 2 2 ; ln 1 ln 1 9 5 4 2 x x bo’lgani uchun tengsizlik yechimga ega emas. (E) 53(01-10-30) 0; 2) 5) log ( 6 ( 3 2 x x x ; 3 0 )1 5)( ( ; 0 2) ( log 0 5 6 3 2 x x x x x x 5;3 x (E) 54(01-10-31) 0; 2) 2 ( log 2 ) 1( log 2 2 ,0 3 x x x Bu tengsizlik o’rinli bo’lishi uchun quyadigilar bajarilishi kerak. 1) ; 0 )1 ( 0 ; 1 2 2 1 2 1 ; 0 )2 2 ( log 0 2 ) 1( log 2 2 2 2,0 3 x x x x x x x x ;1 0 ; 1 x 2) ; 0 )1 ( 0 ; 1 2 2 1 2 1 ; 0 )2 2 ( log 0 2 ) 1( log 2 2 2 2,0 3 x x x x x x x x Bu tengsizliklar sistemasi yechimga ega emas. Javob: ;1 0 ; 1 x (D) 55(01-11-28) 5; 2 12 3) log 12( x x ;3 8 ; 3 8 ; 0 3 5 2 3 x x x x x x . Eng kichik butun yechim -2 (B). 56(01-11-32) ; 0 1 0 5 0; 3 log 5 2 x x x x x ; 0 1 5 x x x ;1 5 1;0 x (C) 57(02-1-59) 0; 3log log 2 2 3 2 x x 0; 3) (log log 2 2 2 x x 1) ;1 0; log2 2 x x 2) 8; 3; log2 x x ;8 1 x (E) 58(02-2-26) ;) 3 log (2 )1 (2 log 2 5,0 x x ; 0 3 2 0 1 2 3 2 1 2 1 ;) 3 log (2 1 2 1 log 2 2 x x x x x x ; 3 2 2 1 0 1 2 3 6 2 4 1 ; 2 3 1 2 0 3 2 1 2 1 2 x x x x x x x x x x ; 3 2 2 1 0 )1 1)(6 (2 2 x x x x x ; 3 2 2 1 0 3 1 2 1 2 1 x x x x x 2 3; 1 1 x (A) 59(02-3-40) ;1 6 log 2; 2 3 3 2 log 6 6 x x ; 0 2 3 3 2 0 2 3 4 6 3 2 ; 0 2 3 3 2 0 2 2 3 3 2 ; 0 2 3 3 2 2 2 3 3 2 x x x x x x x x x x x x x ; 0 3 2 2 3 0 3 2 4 7 ; 0 2 3 3 2 0 2 3 7 4 x x x x x x x x
29 4 ; 7 5,1 ; x . Eng kichik musbat butun yechim 2 (A) 60(02-4-42) 10 1 ;1 ;1 lg lg x x x . Eng kichik butun yechim 1 (D) 61(02-4-43) 5,0 ; )1 log16 (3 x 4; 1 3 x x 1 . Eng kichik butun yechim 2 (E) 62(02-5-26) 3 ; 2 3) log ( 2) 2log ( 8 8 x x 3 ; 2 3) log ( 2) log ( 8 2 8 x x 3 2 4 3 2) ( ; 0 3 0 2 3 2 3 2) ( log 2 2 8 x x x x x x x x ; 3 0 3 16 8 ; 3 0 4 3 4 4 2 2 x x x x x x x x ;4 4;3 ; 3 0 3) 4) ( ( 2 x x x x (E) 63(02-6-37) 0; )1 ( log ) (5 log 2 4 2 2 5 x x x Bu tengsizlik o’rinli bo’lishi uchun quyadigilar bajarilishi kerak. 1) ; 0 0 4 ; 1 1 1 5 ; 0 )1 ( log 0 ) 5( log 2 4 2 2 4 2 2 4 2 2 5 x x x x x x x x x bundan x 2) ; 0 0 5 0 4 ; 1 1 0 5 1 5 ; 0 )1 ( log 0 ) 5( log 2 4 2 2 2 4 2 2 2 4 2 2 5 x x x x x x x x x x x ;0 2 2 0; ; 0 0 5) 5)( ( 0 2) 2)( ( x x x x x x . Butun yechimlar -1 va 1. 2 ta (C) 64(02-6-38) 0; )3 7) log ( 8 ( 2 5 2 x x x 1) 2; ;1 3 0; )3 log ( 2 2 5 x x x 2) ; 0 3 1 3 0 )1 7)( ( ; 0 3 0 )3 ( log 0 7 8 2 2 2 2 3 2 x x x x x x x x ;2 7 0; 2) 2)( ( 0 )1 7)( ( x x x x x . Har ikkovidan 7;2 x 2 (B) 65(02-9-35) ;) lg(27 2 2) lg( x x ;2 ) lg(27 2) lg( x x ; 100 ) 2)(27 ( 27 2 ; 2 ) 2)(27 ( lg 0 27 0 2 x x x x x x x x ; 0 7) 22)( ( 27 2 ; 0 154 29 27 2 2 x x x x x x x x 22;27 7;2 x . Bu oraliqqa 8 ta butun son tegishli. (B) 66(02-10-72) 0; 1 ) log (2 2 2 x x 1) 1 ; 0 1 ; 0 0 1 2 x x x x x 2) ; 0 0 )1 1)( ( 4 ; 0 0 1 2 log ; 0 0 1 0 log 2 2 2 2 2 x x x x x x x x x x x ;1 4 . Har ikkovidan x ;1 4 (A) 67(02-11-35) t x x x 3 3 3 log ;1 log 2 2log bo’lsin. ; 2 0 2) 2)( 0; ( 2 2 0; 1 2 2 ;1 2 2 t t t t t t t t t 9; 9 1 2; log 2 2; 2 3 x x t Bu oraliqdagi tub sonlar 2,3,5 va 7. Bularning yig’indisi 17 (E)
30 68(02-11-36) 0; 3 log 1 4) log (2 5 3 1 x x x 1) 5 2; 5 ; 1 0 0 4 2 0 5 x x x x x x x 2) ; 0 5 2 0 3 log 1 4) (2 log 3 1 x x x x ; 5 2 0 log 4) log (2 3 3 x x x x ; 5 2 0 4 2 4 ; 5 2 1 4 2 ; 5 2 0 4 2 log3 x x x x x x x x x x x x ;2 4 ; 5 2 0 4) 2)( ( x x x x x . Har ikkovidan 5 4;2 x . Tengsizlikning 3 ta butun yechimi bor. (D) 69(03-1-12) 4) 4)ln( ( 5 5 x x x . 4; 5 0; 4 0 5 x x x x Tengsizlikning aniqlanish sohasiga tegishli yagona butun son 5 va u tengsizlikning yechimi emas. Tengsizlikning butun yechimi mavjud emas. (A) 70(03-1-29) 2; log 3 x 1) ;3 ; 0 3) 3)( ( 1 ; 3 1 2 x x x x x x 2) 1;0 ; 0 3) 3)( ( 1 0 ; 3 1 0 2 x x x x x x . Har ikkovidan ;3 1;0 x (C) 71(03-2-22) 3 ; 2cos5 3 2 log4 x ;1 3 log4 2 x ; 1 3 ; 2 3 2 3 3 ; 4 3 2 0 3 2 0 3 x x x x x x x x 1;3 x . Butun yechimlar -3,-2,-1,0. 4 ta (B). 72(03-3-35) ; 2 1 2 1 0 2 2 9 6 9 ,0 2 log 2 log x x ;1 2 9 6 9 0; log 2 9 6 9 log log 2 2 2 2 ,0 2 x x x x 4; 18 6 0; 9 2 2; 9 2 9 6 9 2 2 2 x x x x x 0; 6 1 3 2 0; 2 9 18 2 x x x x 3 6 ; 2 1 x (D) 73(03-4-35) 4; 4; 10 10 100 2 lg lg( 2) 2 x x ; 2 402 ; 2 400 2 ; 0 2 4 100 2 x x x x x x 402; 2 x Eng katta butun yechim 401 (B) 74(03-6-60) ;1 3) (2 log 3 1 x 3 2 1 2 11 ; 2 3 3 5 ; 3 2 3 10 2 ; 0 3 2 3 1 3 2 x x x x x x x (A) 75(03-7-71) log 16; 1 log 8 3 2 x log 16; )1 3 log 16; log ( 1 )1 3 log ( 1 2 2 2 2 x x ;1 15 ;1 15 0 ; 1 16 1 x x x x x (E) 76(03-8-51) 2; 3) log (4 x x
31 1) 0 ; )1 3)( ( 1 ; 3 4 0 3 4 1 ; 0 3 4 3 4 1 2 2 x x x x x x x x x x x x ;1 3 2) ; 75 ,0 0 )1 3)( ( 1 ; 3 4 0 3 4 1 ; 0 3 4 3 4 1 0 2 2 x x x x x x x x x x x x Bu tengsizliklar sistemasi butun yechimga ega emas, demak x ;1 3 . Butun yechimlar 2 va 3. Bu sonlarning yig’indisi 5. (A) 77(03-9-22) 0; 4 log 2 log 2 2 x x 4; log ; 2 4 log 0 4) 2)(log (log 2 2 2 2 x x x x 16 4 x . Bu oraliqda 4 ta tub son bor. (C) 78(03-9-23) 0; 2,0 log 2 4) 3 8 | log ( | 3 2 5 x x x 8 0; 8 )1 x x ;. 2) 0; log 9 4) 3 8; log ( 5 2 5 x x x ; 0 4 3 9 4 3 ; 0 4 3 log 9 4 3 log 2 2 2 5 2 5 x x x x x x x x 0 )1 4)( ( ; 0 2 61 3 2 61 3 ; 0 4 3 0 13 3 2 2 x x x x x x x x 2 61 ;4 3 ; 1 2 61 3 x . Butun yechimlar -2,5 va 8. 3ta (D) 79(03-9-40) 2 ; 2) log ( ) ( 2 1 x f x ; 0 2 2 2) ( log ; 0 2 0 2 2) ( log 2 1 2 1 x x x x 6; 2 ; 2 6 ; 2 4 2 x x x x x bu oraliqda 4 ta butun son mavjud. (D) 80(03-12-24) 4; 2) log ( 2 3 x ; 2 0 )7 11)( ( ; 2 0 9 )2 ( ; 0 2 9 )2 ( 2 2 2 2 x x x x x x x ;2 11 ;7 2 x . Bu oraliqda 18 ta butun son mavjud. (D) 81(01-12-57) 21; ln(3 2 27) x e 0 ; )3 3)( ( 0 4) 4)( ( ; 0 9 0 48 3 ; 0 27 3 21 27 3 2 2 2 2 x x x x x x x x 4;3 ;4 3 x .-4 va 4 butun yechimlar. 2ta (E)
32
O'xshash fayllar
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin