Kirish
Ro'yhatdan o'tish
Barchasi
Dars ishlanmalar
IELTS AND CEFR
Kurs ishlari
Referat
slaydlar
METRIKA VA METRIK FAZO (METRIKA VA METRIKA AKSIOMALARI, BOG`LANISHLI VA BOG`LANISHSIZ TO`PLAMLAR, METRIKA VA METRIK FAZOGA OID MISOLLAR)
Yuklangan vaqt
2024-04-28
Yuklab olishlar soni
1
Sahifalar soni
6
Faytl hajmi
46,5Β KB
Yuklab olish
Ilmiybaza.uz MAVZU: METRIKA VA METRIK FAZO REJA: ASOSIY QISM. I. METRIKA VA METRIKA AKSIOMALARI. II. BOG`LANISHLI VA BOG`LANISHSIZ TO`PLAMLAR. III. TO`PLAMNING CHEGARAVIY, URINISH NUQTALARI. XULOSA: METRIKA VA METRIK FAZOGA OID MISOLLAR. Metrik fazo β bu biror bo`sh bo`lmagan to`plamdagi ikki element orasidagi masofani aniqlash ma`lum demakdir. Bu ikki nuqta orasidagi masofani aniqlash amali ma`lum bir shartlarni yoki akslantirishlarni qanoatlantirishi shart bo`ladi. Bu shartlar masofa yoki metrika aksiomalari deb yuritiladi. Metrik fazo matematikaning deyarli barcha sohalariga tadbiq etiladi. Fazoda ikki nuqta orasidagi masofa ma`lum bo`lsa, nuqtalarning o`zaro yaqinligini, nuqta va to`plamning, ikki to`plamning yaqinligini aniqlasa bo`ladi. Bu esa, fazoning, figuralarning turli geometrik xossalarini o`rganishda muhim ahamiyatga egadir.
Ilmiybaza.uz Bizga π fazo va π β π to`g`ri ko`paytma berilgan bo`lsin. π: π₯ β π₯ β π₯ funksiya uchun 1. π(π₯, π¦) β₯ 0 , π(π₯, π¦) = 0 faqat x=y da. 2. π(π₯, π¦) = π(π¦, π₯) 3. π(π₯, π¦) β€ π(π₯, π§) + π(π§, π¦) shartlar bajarilsa, bu funksiya metrika deyiladi. 1,2,3 shartlar bajarilsa metrika aksiomalari deyiladi. (π₯, π) juftlik metrik metrik fazo deyiladi. Misol-1: π₯ = π β² |βπ| = |π| π(π₯, π¦) = |π₯ β π¦| 1. π(π₯, π¦) = |π₯ β π¦| β₯ 0 2. π(π₯, π¦) = |π₯ β π¦| = |β(π¦ β π₯)| = |π¦ β π₯| = π(π¦, π₯) 3. π(π₯, π¦) = |π₯ β π¦| = |π₯ β π§ + π§ β π¦| β€ |π₯ β π§| + |π§ β π¦| = π(π₯, π§) + π(π§, π¦) π(π₯, π¦) = π(π₯, π§) + π(π§, π¦) Misol-2: π(π₯, π¦) = |π₯2 β π¦2| metrika emas. 1. π(π₯, π¦) = |π₯2 β π¦2| β₯ 0 |π₯2 β π¦2| = 0 π₯2 β π¦2 = 0 π₯2 = π¦2 π₯ = Β±π¦ Misol-3: π(π₯, π¦) = π|π₯βπ¦| β 1 1. π(π₯, π¦) β₯ 0 π|π₯βπ¦| = 1 |π₯ β π¦| = 0 π₯ = π¦ 2. π(π₯, π¦) = π(π¦, π₯) 3. π|π₯βπ¦| β 1 β€ π|π₯βπ§| β 1 + π|π§βπ¦| β 1 π|π₯βπ¦| β€ π|π₯βπ§| + ππ§βπ¦ β 1 π₯ = 1 π¦ = 1 z=1 π2 β€ π + π β 1 Bizga π fazo va unda π΄ to`plam berilgan bo`lsin. Shunday πΊ1 , πΊ2 ochiq to`plamlar mavjud bo`lib, 1. (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ 2. (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β 3. π΄ β© πΊ1 β β π΄ β© πΊ2 β β bo`lsa π΄ to`plam bog`lanishsiz to`plam deyiladi.
Ilmiybaza.uz Agar bunday πΊ1 , πΊ2 lar mavjud bo`lmasa π΄ to`plam bog`lanishli to`plam deyiladi. Agar π΄ = π deb olsak bog`lanishli fazo kelib chiqadi. Misol-4: π = π β² π΄ = (0,7) βͺ (9,12) πΊ1 = (β1,8) πΊ2 = (8,14) π΄ β© πΊ1 = (0,7) π΄ β© πΊ2 = (9,12) (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β π΄ β bog`lanishsiz π΄ β© πΊ1 β β π΄ β© πΊ2 β β Agar π΄ to`plamni β 2 ta nuqtasini shu to`plam ichida tutashtirish mumkin bo`lsa, u bog`lanishli bo`ladi. bog`lanishli.
Ilmiybaza.uz bog`lanishsiz. Misol-5: π = π β² π΄ = π πΊ1 = (0; 9.1) πΊ2 = (9.3; β) π β© πΊ1 = {1,2,3,4,5,6,7,8,9} β β π β© πΊ2 = {π, π > 9, π β π} β β (π β© πΊ1) βͺ (π β© πΊ2) = π (π β© πΊ1) β© (π β© πΊ2) = β π βbog`lanishsiz to`plam. Teorema-1: π topologik fazoda π΄ bog`lanishli to`plam bo`lsa π΄Μ yopig`i ham bog`lanishli bo`ladi. Isbot: Faraz qilaylik π΄ bog`lanishli π΄Μ bog`lanishsiz bo`lsin. U holda shunday πΊ1; πΊ2 mavjudki ο· (π΄Μ β© πΊ1) βͺ (π΄Μ β© πΊ2) = π΄Μ ο· (π΄Μ β© πΊ1) β© (π΄Μ β© πΊ2) = β ο· π΄Μ β© πΊ1 β β π΄Μ β© πΊ2 β β o`rinli bo`lishi kerak. π΄Μ β π΄ ekanligidan (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β π΄ β© πΊ1 β β π΄ β© πΊ2 β β
Ilmiybaza.uz Bulardan π΄ ni bog`lanishsiz to`plam ekanligi kelib chiqadi. Bu esa farazga zid. Bu zidlik teoremani isbotlaydi. π₯ nuqta tegishli bo`lgan barcha bog`lanishli to`plamlar birlashmasi bog`lanishlilik komponentasi deyiladi va π»π₯ kabi belgilanadi. Teorema-2: Bog`lanishlilik komponentasi yopiq to`plam. Isbot: Agar π» bog`lanishli to`plam bo`lsa, π»Μ ham bog`lanishli bo`ladi. π» β π»Μ β kompotenta ta`rifiga ko`ra π» = π»Μ β π» yopiq to`plam ekanligi kelib chiqadi. Teorema-3: π₯ , π¦ nuqtalar uchun π»π₯ va π»π¦ komponentalar kesishmaydi yoki ustma β tushadi. Isbot: Agar π»π₯ β© π»π¦ β β π»π₯ βͺ π»π¦ = π» bog`lanishli to`plam bo`ladi. π₯ β π» , π¦ β π» π»π₯ β π» ; π»π¦ β π» lekin π»π₯ , π»π¦ ni komponentaligidan π»π₯ = π»π¦ teorema isbotlandi. Xulosa 1-misol: π = π β² da π΄ = (1,6) ni tekshiring. πΊ1 = (0, π) πΊ2 = (π, 7) 3) (π΄ β© πΊ1) β β (π΄ β© πΊ2) β β 2) (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β π > 1 π < 6 π β€ π 1) (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ π > π π, π β β πΊ1, πΊ2 β β π΄ β bog`lanishli to`plam. 2-misol: π = π β² da π΄ = π πΊ1 = (ββ; π) πΊ2 = (π; β) 3) (π΄ β© πΊ1) β β (π΄ β© πΊ2) β β 2) (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β π β€ π 1) (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ π β₯ π π = π = β2 πΊ1 = (ββ; β2) πΊ2 = (β2: β) π΄ β bog`lanishsiz to`plam.
Ilmiybaza.uz 3-misol: π = π π΄ = π πππ‘π΄ =? ππ΄ =? π΄Μ =? π₯ = 2 π΅π(π₯) = (2 β π; 2 + π) β π΄ π₯ = π₯0 π₯0 β (π₯0 β π1; π₯0 + π2) = ππ₯0 ππ₯0 β π πππ‘π = β π₯ = 2 ππ₯ = (1.5; 2.5) (ππ₯ = (2 β π1; 2 + π2) { ππ₯ β© π β β ππ₯ β© (π₯ π) β β β π₯ = 2 β ππ π₯ = 2.9 ππ₯ = {2.19; 2.91} ππ₯ β© π = β 2.9 β ππ ππ = π πΜ = ππ βͺ πππ‘π = π βͺ β = π 4-misol: π = π πππ‘π ππ πΜ π β Ratsional sonlar. π₯ = π₯0 π₯0 β (π₯0 β π1; π₯0 + π2) = ππ₯0 ππ₯ β π πππ‘π = β π₯ = 2 ππ₯ = (2 β π1; 2 + π2) { ππ₯ β© π β β ππ₯ β© (π₯ π) β 0 β ππ β π πΜ = ππ βͺ πππ‘π = π βͺ β = π
O'xshash fayllar
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin
Matematika
13 soat oldin