METRIKA VA METRIK FAZO (METRIKA VA METRIKA AKSIOMALARI, BOG`LANISHLI VA BOG`LANISHSIZ TO`PLAMLAR, METRIKA VA METRIK FAZOGA OID MISOLLAR)
Yuklangan vaqt
2024-04-28
Yuklab olishlar soni
1
Sahifalar soni
6
Fayl hajmi
46,5Β KB
Ilmiybaza.uz
MAVZU: METRIKA VA METRIK FAZO
REJA:
ASOSIY QISM.
I.
METRIKA VA METRIKA AKSIOMALARI.
II.
BOG`LANISHLI VA BOG`LANISHSIZ TO`PLAMLAR.
III.
TO`PLAMNING CHEGARAVIY, URINISH NUQTALARI.
XULOSA: METRIKA VA METRIK FAZOGA OID MISOLLAR.
Metrik fazo β bu biror bo`sh bo`lmagan to`plamdagi ikki element orasidagi
masofani aniqlash ma`lum demakdir. Bu ikki nuqta orasidagi masofani aniqlash
amali ma`lum bir shartlarni yoki akslantirishlarni qanoatlantirishi shart bo`ladi. Bu
shartlar masofa yoki metrika aksiomalari deb yuritiladi. Metrik fazo matematikaning
deyarli barcha sohalariga tadbiq etiladi. Fazoda ikki nuqta orasidagi masofa ma`lum
bo`lsa, nuqtalarning o`zaro yaqinligini, nuqta va to`plamning, ikki to`plamning
yaqinligini aniqlasa bo`ladi. Bu esa, fazoning, figuralarning turli geometrik
xossalarini o`rganishda muhim ahamiyatga egadir.
Ilmiybaza.uz
Bizga π fazo va π β π to`g`ri ko`paytma berilgan bo`lsin.
π: π₯ β π₯ β π₯ funksiya uchun
1. π(π₯, π¦) β₯ 0 , π(π₯, π¦) = 0 faqat x=y da.
2. π(π₯, π¦) = π(π¦, π₯)
3. π(π₯, π¦) β€ π(π₯, π§) + π(π§, π¦) shartlar bajarilsa, bu funksiya metrika
deyiladi.
1,2,3 shartlar bajarilsa metrika aksiomalari deyiladi. (π₯, π) juftlik metrik metrik fazo
deyiladi.
Misol-1: π₯ = π
β² |βπ| = |π| π(π₯, π¦) = |π₯ β π¦|
1. π(π₯, π¦) = |π₯ β π¦| β₯ 0
2. π(π₯, π¦) = |π₯ β π¦| = |β(π¦ β π₯)| = |π¦ β π₯| = π(π¦, π₯)
3. π(π₯, π¦) = |π₯ β π¦| = |π₯ β π§ + π§ β π¦| β€ |π₯ β π§| + |π§ β π¦| = π(π₯, π§) +
π(π§, π¦)
π(π₯, π¦) = π(π₯, π§) + π(π§, π¦)
Misol-2: π(π₯, π¦) = |π₯2 β π¦2| metrika emas.
1. π(π₯, π¦) = |π₯2 β π¦2| β₯ 0
|π₯2 β π¦2| = 0 π₯2 β π¦2 = 0 π₯2 = π¦2 π₯ = Β±π¦
Misol-3: π(π₯, π¦) = π|π₯βπ¦| β 1
1. π(π₯, π¦) β₯ 0 π|π₯βπ¦| = 1 |π₯ β π¦| = 0 π₯ = π¦
2. π(π₯, π¦) = π(π¦, π₯)
3. π|π₯βπ¦| β 1 β€ π|π₯βπ§| β 1 + π|π§βπ¦| β 1
π|π₯βπ¦| β€ π|π₯βπ§| + ππ§βπ¦ β 1 π₯ = 1 π¦ = 1 z=1
π2 β€ π + π β 1
Bizga π fazo va unda π΄ to`plam berilgan bo`lsin. Shunday πΊ1 , πΊ2 ochiq
to`plamlar mavjud bo`lib,
1. (π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄
2. (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β
3. π΄ β© πΊ1 β β
π΄ β© πΊ2 β β
bo`lsa π΄ to`plam bog`lanishsiz to`plam deyiladi.
Ilmiybaza.uz
Agar bunday πΊ1 , πΊ2 lar mavjud bo`lmasa π΄ to`plam bog`lanishli to`plam
deyiladi.
Agar π΄ = π deb olsak bog`lanishli fazo kelib chiqadi.
Misol-4: π = π
β²
π΄ = (0,7) βͺ (9,12) πΊ1 = (β1,8) πΊ2 = (8,14)
π΄ β© πΊ1 = (0,7) π΄ β© πΊ2 = (9,12)
(π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄
(π΄ β© πΊ1) β© (π΄ β© πΊ2) = β
π΄ β bog`lanishsiz
π΄ β© πΊ1 β β
π΄ β© πΊ2 β β
Agar π΄ to`plamni β 2 ta nuqtasini shu to`plam ichida tutashtirish mumkin
bo`lsa, u bog`lanishli bo`ladi.
bog`lanishli.
Ilmiybaza.uz
bog`lanishsiz.
Misol-5: π = π
β² π΄ = π
πΊ1 = (0; 9.1) πΊ2 = (9.3; β)
π β© πΊ1 = {1,2,3,4,5,6,7,8,9} β β
π β© πΊ2 = {π, π > 9, π β π} β β
(π β© πΊ1) βͺ (π β© πΊ2) = π (π β© πΊ1) β© (π β© πΊ2) = β
π βbog`lanishsiz to`plam.
Teorema-1: π topologik fazoda π΄ bog`lanishli to`plam bo`lsa π΄Μ
yopig`i ham
bog`lanishli bo`ladi.
Isbot: Faraz qilaylik π΄ bog`lanishli π΄Μ
bog`lanishsiz bo`lsin.
U holda shunday πΊ1; πΊ2 mavjudki
ο· (π΄Μ
β© πΊ1) βͺ (π΄Μ
β© πΊ2) = π΄Μ
ο· (π΄Μ
β© πΊ1) β© (π΄Μ
β© πΊ2) = β
ο· π΄Μ
β© πΊ1 β β
π΄Μ
β© πΊ2 β β
o`rinli bo`lishi kerak.
π΄Μ
β π΄ ekanligidan
(π΄ β© πΊ1) βͺ (π΄ β© πΊ2) = π΄ (π΄ β© πΊ1) β© (π΄ β© πΊ2) = β
π΄ β© πΊ1 β β
π΄ β© πΊ2 β β