O‘ZBEKISTON RESPUBLIKASI OLIY VA O‘RTA MAXSUS TA’LIM
VAZIRLIGI
ISLOM KARIMOV NOMIDAGI
TOSHKENT DAVLAT TEXNIKA UNIVERSITETI
“NAZARIY MEXANIKA, MEXANIZM VA MASHINALAR NAZARIYASI”
KAFEDRASI
«MEXANIZM VA MASHINALAR NAZARIYASI» fanidan
KURS ISHI
Toshkent - 2023
1
МЕХАНИЗМНИ КИНЕМАТИК ТЕКШИРИШ
Берилган бошланғич қийматлар:
Ndv=780 ayl/min ;
n1= 110 ayl/min ;
lOA=0.040 m ;
lAB=0,160 m ;
Механизмнинг кинематик схемасини чизиш.Бунинг учун механизмнинг
узунлик масштабини танлаймиз.
μl=
lOA
OA=0,0008 м/ мм
яъни, хақиқий узунлиги бўлган етакчи звено 1 ни схемадан 50 мм ли кесмага
алмаштириб чизамиз.
Етакчи звенонинг бир марта тўла айланишида 11 вазиятни чизамиз. Бунинг
учун O1 марказдан O1A = 50 мм радиус билан A нуқтасининг траекториясини
билдирувчи айлана чизамиз. Бу айланани тенг 12 та қисмга бўламиз ва
кривошипнинг хар 30° да бурилган вазиятни оламиз.
Кривошипнинг хар бир вазиятининг туриш режасини чизамиз. Масалан,
A0,
A1,
A2,
. . .
A11.
Масштаб коэффициентидан фойдаланиб, A нуқтадан кесма AВ узунлигида ёй
ўтказамиз.
Ўтказилган ёйда кривошипнинг A нуқтасидан AВ шатун узунлигида кесма
билан нуқта белгилаймиз. Бунда шатун AВ нинг узунлиги қуйидагича бўлади:
AB = lAB
μl
= 0.160
0.0008 = 200мм
Механизм звеносининг оғирлик марказини аниқлаб, AB шатуннинг ўртасини
белгилаймиз. Унинг узунлиги:
Механизмнинг тезликлар режасини қуриш.Кривошипнинг бурчак тезлигини
аниқлаймиз:
ω1 =
πn1
30 =11.5 s-1
Кривошипнинг A нуқтасининг тезлигини аниқлаймиз:
vA = ω1lOA = 11.5 ⋅ 0.04 = 0.46m/s
Тезликлар режаси учун масштаб коэффициенти μv ни аниқлаймиз:
μv = vA
pa = 0.46
50
= 0.001
m s
⁄
mm
Листнинг ихтиёрий жойида тезликлар режасининг қутб нуқтаси p ни
танлаймиз. Қутб нуқтасидан кривошипнинг йўналиши бўйича кривошип O1Aга тик
чизиқ чизамиз ва унда pa=50 mm кесмани белгилаймиз. B нуқтанинг тезликлар
планидаги ўрнини аниқлашда қуйидаги вектор тенгламадан фойдаланамиз.
3
ε1 = dω1
dt = 0.
Фақат A нуқтанинг нормал тезланиши бўлади. Унинг қиймати қуйидагича
топилади:
aA
n = ω1
2 ⋅ lOA = 5,29 м с2
⁄
Тезланишлар режасини қуриш учун масштаб коэффициенти μa ни танлаймиз.
Кривошипдаги A нуқтанинг тезланишини қутб тезланишлар режасида πa=50 мм
кесма билан белгилаймиз, яъни тезланишлар режаси кривошип масштаби бўйича
чизилади.
μa = aA
n
πa = 5,29
50
= 0.1058 м с2
⁄
мм
Листда қутб нуқтаси π нуқтани ихтиёрий танлаймиз. Ундан кривошип O1Aга
параллел қилиб, A нуқтадан O1 нуқтага томон нормал тезланиш вектори
йўналишини πa = 50мм кесмада белгилаймиз. Қуйидаги вектор тенгламалар
системасидан фойдаланиб B нуқтанинг тезланишлар режасидаги ўрнини топамиз.
{
& a⃗ B = a⃗ A + a⃗ BA
n
+ a⃗ BA
t
& a⃗ B = a⃗ x−x + a⃗ x−xB
n
+ a⃗ x−xB
t
Биринчи тенгламага асосан, a нуқтадан шатун AB нинг нормал тезланиш
вектори a⃗ BA
n ни кесма узунлигида an1 =
aBA
n
μa ,
[мм] ўлчаб, B дан A га қараб
чизиқчизамиз, бу нуқтани n1 деб белгилаб, n1 учидан AB шатунга перпендикуляр
қилиб унинг тангенциал тезланиш вектори a⃗ BA
t ни чизамиз.
Иккинчи тенгламага асосан, ax−x = 0 бўлгани ва ползун x − x ўқи бўйлаб
харакат қилгани учун, қутб нуқта π дан x − x ўқига параллел қилиб чизиқ ўтказамиз,
икки кесишиш нуқтасини b деб белгилаймиз. Топилган b нуқта билан a нуқтани
ўзаро бирлаштирамиз.
Юқорида келтирилган кесма узунликларни қуйидаги формулалардан
аниқлаймиз.
aBA
n
=
vBA
2
lAB ,
[
м
с2]
an1 =
aBA
n
μa ,
[мм]
Ползун B нуқтасининг абсолют тезланиши
aB = πb ⋅ μa,
[м с2
⁄
]
Шатун оғирлик маркази S2 нинг абсолют тезланиши
aS2 = πS2 ⋅ μa,
[м с2
⁄
]
Bнуқтанинг A нуқтага нисбатан нисбий тангенциал тезланиши
aBA
t
= n1b ⋅ μa,
[м с2
⁄
]
Шатун 2 нинг бурчак тезланиши
ε2 = aBA
t
lAB
,
[ 1
с2]
Юқоридакелтирилганформулаларданфойдаланганҳолда,
тезланишларпланини 6 тахолатиникесмаузунликлариниўлчаб, ҳисоблабчизамиз.
лиги Механизмнинг холатлари
0
1
2
3
4
5
6
7
8
9
4
3,7834 5,767
2,0737
1,3658
3,2163
3,4078 5,29
3,4078 3,2163
1,3658
6,0432 5,341
3,2882
2,73
3,7198
4,2077 4,5367 4,2077 3,7198
2,73
0
2,476
4,5963
5,4634
4,5963
2,4776 0
2,4776 4,5963
5,5963
1,5625 1,19
0,4099
0
0,4099
1,19
1,5625 1,19
0,4099
04
0
15,475 28,7267 34,9769 28,7267 15,475 0
15,475 28,7267 34,9769
РИЧАГЛИ МЕХАНИЗМНИ КИНЕТОСТАТИК ТЕКШИРИШ
Берилган бошланғич қийматлар:
m2 = 4кг;;
m3 = 9кг;
JS2 = 0.009кг ⋅ м2;
Pcmax =25kN
Механизмнинг берилган холатида кинетостатик ҳисоблаш учун механизм
звеноларига қуйидаги ташқи кучларни ҳисоблаб топиб олишимиз керак:
1) звеноларнинг оғирлик кучлари;
2) звеноларнинг инерция кучлари;
3) шатундаги инерция кучларининг моментлари;
4) ползунга таъсир этувчи прессланувчи динамик қаршилик кучи.
Механизм ползунига таъсир этувчи ташқи қаршилик кучини аниқлаймиз:
РС = 100 мм;
РС = PCmax;
Pcmax=25kN
Механизм звеноларининг ођирлик кучларини аниқлаймиз:
Шатун AB нинг оғирлик кучи
G2 = m2g = 4 ⋅ 9,81 = 39.24Н
Ползун В нинг оғирлик кучи
G3 = m3g = 9 ⋅ 9,81 = 88.29Н
Механизм звеноларининг оғирлик марказига қўйилган инерция кучларини
ҳисоблаймиз.
Pu2 = m2aS2 = 4 ⋅ 3.2882 = 13.1528Н
Pu3 = m3ab
= 9 ⋅ 2.0737 = 18.6633Н
Шатунга таъсир этувчи инерция моменти қуйидаги формуладан аниқланади:
Mu2 = −JS2ε2 = 0.009 ⋅ 28.7267 = 0.2585H ⋅ м
Механизмни куч таъсирида ҳисоблаш унинг тузилиш формуласида кўрсатилган
охирги Ассур гурухидан бошланиб, етакчи звено билан тугатилади.
Дастлаб, механизмнинг 2–3 звеноларига таъсир этувчи кучларни ҳисоблаш
учун B нуқтага нисбатан олинган моментлар тенгламасини тузамиз:
∑ MB(Pi) = 0
Pu2hu2 + R21
t
⋅ AB + G2hG2 = 0
ушбу тенгликдан реакция кучи R21
t ни аниқлаймиз, яъни
R21
t
= Pu2hu2 + G2hG2
AB
=
5
= − 13.152 ⋅ 83.54 + 39.24 ⋅ 97,63
200
= 24.649H
Механизмнинг 2–3 звенолари учун кучлар режаси масштабини
μP = Pc
Pc
= 7500
200
= 37.5 H мм
⁄
қабулқилиб,
звено
2–3
гатаъсирэтувчи,
қийматимаълумбўлганкучларнингчизмадагиузунликларинианиқлаймиз:
R21
t
= R21
t
⁄μP
= 0.657мм
G2 = G2 μP
⁄
= 1.05мм
G3 = G3 μP
⁄
= 2.1944мм
Pu2 = Pu2 μP
⁄
= 0.35мм
Pu3 = Pu3 μP
⁄
= 0.49752мм
Номаълум бўлган реакция кучларининг хақиқий қийматларини ҳисоблаймиз.
R21
n = R21
n ⋅ μP = 203.9465 ⋅ 37.5 = 7647.9938H
R30 = R30 ⋅ μP = 46.514881 ⋅ 37.5 = 1744.308H R21 = R21 ⋅ μP = 203.94755 ⋅
37.5 = 7648.033H
Кривошипга A нуқтадан звено 2 нинг реакция кучи R12 таъсир этади. Бу куч
қиймати жихатидан R21 кучга тенг ва қарама-қарши томонга йўналган бўлади.
Кривошипнинг O1 нуқтасидан таянчдан кривошипга реакция кучи R01 таъсир этади.
Кривошипнинг
A
нуқтасига
кривошипга
перпендикуляр
йўналган,
мувозанатловчи куч PMқўйилган. Мувозанатловчи куч PM ни аниқлаш учун барча
кучларнинг O1 нуқтага нисбатан моментлар тенгламасини ёзамиз:
∑ MO1(Pi) = 0
PMO1A − R12h12 = 0,
БунданPM =
R12h12
O1A =
7648.033⋅47.69
50
= 7294.69H
Кучлар режаси масштабини
μP =
R12
R12 = 37.5 H мм
⁄
,
деб қабул қилиб, звено 0–1 га таъсир этувчи, қиймати маълум кучларнинг
чизмадаги узунликларини ҳисоблаймиз:
PM = PM μP
⁄
= 194.53мм
Номаълум реакция кучини аниқлаймиз:
R01 = R01 ⋅ μP = 2323.125H
Н.Е.Жуковский усули билан мувозанатловчи куч
PM ни қийматини аниқлаш.
Кривошипнинг бурчак тезлиги (ω1) йўналишига қарама-қарши йўналишда 90° га
бурилган бурилма тезликлар планини чизамиз. Механизм звеноларига таъсир
этувчи барча кучларни ва моментларни параллел равишда, механизмнинг
6
схемасидан тезликлар планидаги мос нуқталарга кўчирамиз. Масалан, G3 куч
механизмнинг B нуқтасига таъсир қилади. Уни механизм схемасидан тезликлар
планидаги b нуқтага параллел равишда кўчирамиз. Қолган кучлар ва моментлар ҳам
худди шу тартибда кўчирилади.
Тезликлар планидаги кучларни кўчириб бўлгандан сўнг, Pv нуқтасига
нисбатан моментлар тенгламасини тузамиз:
−PM
Ж ⋅ O1A + (PC − Pu3)pb − G2h2 − Pu2hu2 = 0
Чизмадан кучларнинг елка узунликларини ўлчаб, мувозанатловчи куч PM
Ж
нинг қийматини ҳисоблаймиз:
PM
Ж =
(PC − Pu3)pb − G2h2 − Pu2hu2
O1A
=
= 16410 H
Икки усулда ҳисоблаб топилган мувозанатловчи кучларни ҳисоблашда йўл
қўйилган хатоликни ҳисоблаймиз. Бунда хатолик ±5% ошмаслиги керак, акс холда
ҳисоблашни
такроран
ҳисоблаб
чиқилади.Δ% =
PM
Ж−PM
PM
Ж
⋅ 100% =
= 16410 − 2492.79
16410
⋅ 100% = 4.12 %
ЭВОЛЬВЕНТА
ПРОФИЛЛИ
ТИШЛИ
ИШЛАШМАНИ
ВА
ПЛАНЕТАР
РЕДУКТОРНИ КИНЕМАТИК СХЕМАСИНИ ЛОЙИҲАЛАШ
Берилган:
z4 = 20
z5 = 26
m = 4мм
nдв
= 780мин−1
n1
= 110мин−1
mpl
=
мм
Бўлиш айланалари радиуслари:
r1 = 0,5 ⋅ m ⋅ z1 = 0,5 ⋅ 4 ⋅ 20 = 40мм
r2 = 0,5 ⋅ m ⋅ z2 = 0,5 ⋅ 4 ⋅ 26 = 52мм
Асосий айланаларнинг радиуслари:
rb1 = r1 ⋅ cos α = 40 ⋅ cos 2 0° = 37,587мм
rb2 = r2 ⋅ cos α = 52 ⋅ cos 2 0° = 48,864мм
ғилдирак тишларининг баландлиги:
h1 = h2 = m ⋅ (2 ⋅ ha
∗ + c0) = 4 ⋅ (2 ⋅ 1 + 0,25) = 9мм
Илашманинг бошланғич айлана ёйи бўйича қадами:
p = π ⋅ m = 3,14 ⋅ 4 = 12,56мм
Тишнинг бошланғич айлана ёйи бўйича қалинлиги
S1 = S2 = 0,5p = 0,5 ⋅ 12,56 = 6,28мм
ғилдирак тишларининг ботиқлиги айланаси радиуслари:
rf1 = r1 − m ⋅ (1 + c0) = 40 − 4 ⋅ (1 + 0,25) = 35мм
rf2 = r2 − m ⋅ (1 + c0) = 52 − 4 ⋅ (1 + 0,25) = 47мм
7
ғилдирак тишларининг чиқиқлари айланаси радиуслари:
Галтелнинг юмоқланиш радиуси
rρ = 0,4m = 0,4 ⋅ 4 = 1,6мм
ўқлараро масофа
aw = 0,5m(z1 + z2) = 0,5 ⋅ 4 ⋅ (20 + 26) = 92мм
Чизманинг узунлик масштаби μl ни танлаймиз. Бунда тишнинг чизмадаги
баландлиги h > 50 мм бўлиши керак.
μl = h
h
= 9
50 = 0.0,18 мм
мм
ғилдиракларнинг O4 ва O5 марказлари оралиғини топамиз:
aw = aw
μl
=
92
0.18
= 511,11мм
O4 ва O5 марказлар тўғри чизиқ билан туташтирилади, бу марказлардан
r1 = r1
μl
= 222,222мм
r2 = r2
μl
= 288,889мм
радиуслар билан бўлиш айланалари чизилади.
Икки айланининг уриниш нуқтаси Pдан бўлиш айланаларига уринма
чизиқτ − τўтказилади. Уринма чизиқτ − τ, марказлар O4 ва O5 ни туташтирувчи
чизиққа тик бўлади.
O4 ва O5 марказлардан
rb1 = rb1
μl
= 208,816мм
rb2 = rb2
μl
= 271,466мм
радиуслар билан асосий айланалари чизилади.
Қутб нуқтаси P дан уринма чизиқ τ − τ га α = 20° бурчак остида асосий
айланаларга умумий бўлган уринма чизиқ n − n ўтказилади. Бу уринма чизиқ
асосий айланалар rb4 ва rb5 да уриниш нуқталари A ва B ни беради. Бунда кесма AB
назарий илашиш чизиғи дейилади.
Ғилдиракларнинг O4 ва O5 марказларидан
ra1 = ra1
μl
= 244,444 мм
ra2 = ra2
μl
= 311,111мм
радиуслар билан ғилдирак тишларининг чиқиқлари айланаси,
rf4 = rf4
μl
= 194,444мм
rf5 = rf5
μl
= 261,111мм
радиуслар билан эса ғилдирак тишларининг ботиқлари айланалари чизилади.
8
Илашиш чизиғи n − n ни икки ғилдиракларнинг асосий айланаларида думалатиб,
қутб нуқтаси Pданўтувчи эвольвента профили чизилади.
Чизмадаги кесма AP ни тенг қисмларга бўламиз. Масалан, кесма AP ни тўртта тенг
қисмларга бўлиб, P3,
32,
21,
1A кесмаларни оламиз. Илашиш чизиғининг
давомида A5 ва 56 тенг кесмаларни ҳам белгилаймиз.
Aнуқтадан бошлаб, асосий айланада бу кесмаларни тенг A1 = Ȃ 1̑, A2 = Ȃ 2̑, A3 =
Ȃ 3̑ ′, шунингдек, A5 = Ȃ 5̑, A6 = Ȃ 6̑ ′ ёйларни белгилаймиз.
Белгиланган 1′,
2′,
3′,
4′,
5′,
6′ нуқталарни ђилдиракнинг маркази O4 билан
туташтирамиз. Бу нуқталардан радиус чизиқларига тик, яъни асосий айланага
уринма чизиқлар ўтказамиз.
Эвольвентанинг «эвольвентадан ўтказилган нормал чизиқнинг узунлиги асосий
айланаси ёйининг узунлигига тенг» деган хоссага асосланиб, эвольвента эгри
чизиғини чизамиз. Бунинг учун биринча уринма чизиқда битта 1′ − 1″ кесма,
иккинчи уринма чизиқнинг 2 нуқтасидан 2′ − 2″ кесма, учинчи уринманинг 3
нуқтасидан 3′ − 3″ кесма белгилаймиз ва хоказо.
Белгиланган
1″,
2″,
3″,
4″,
5″,
6″
нуқталарни
кетма-кет
туташтириб,
эвольвента чизиғини хосил қиламиз. Иккинчи ғилдирак тишининг профилини ҳам
худди шу тарзда чизамиз.
Агар rf < rb бўлса, тиш профилининг эвольвента бўлмаган қисмини радиал тўғри
чизиқ воситасида ғилдирак маркази билан бирлаштириб, хосил бўлган чизиқни тиш
ботиқлиги айланаси билан
rρ = rρ
μl
= 8,89мм
радиус айлана ёйи ёрдамида туташтирамиз.
Бошланғич айлана ёйи бўйича тишнинг қалинлиги
S4 = S5 = S4
μl
= 34,89мм
ни белгилаймиз ва уни тенг икки қисмга бўламиз. Уни ғилдирак маркази O4 билан
туташтириб, тишнинг симметрия ўқини хосил қиламиз. Симметрик проекциялаш
усулида тишнинг иккинчи эвольвента профилини чизамиз.
Тишнинг бошланғич айлана ёйи бўйича қадами:
𝐩 = 𝐩
𝛍𝐥
=
га тенг оралиқда қўшни тишларнинг симметрия ўқларини белгилаймиз ва тишнинг
профилларини чизамиз.
Иккинчи ғилдирак тишининг профилини ҳам худди шу тариқа чизамиз. Хар
бир ғилдиракнинг учтадан тиши чизилади.